DPM 4 Patient Monitor

Operator’s Manual
Revision History

This manual has a revision number. This revision number changes whenever the manual is updated due to software or technical specification change. Contents of this manual are subject to change without prior notice.

- Revision number: 11.0
- Release time: 2015-03

© Copyright 2008-2015 Mindray DS USA, Inc. All rights reserved.

⚠️ WARNING

- Federal Law (USA) restricts this device to sale by or on the order of a physician.
Intellectual Property Statement

Mindray DS USA, Inc. (hereinafter called Mindray DS) owns the intellectual property rights to this product and this manual. This manual may refer to information protected by copyrights or patents and does not convey any license under the copyright and patent rights of Mindray DS, nor the rights of others.

Mindray DS intends to maintain the contents of this manual as confidential information. Disclosure of the information in this manual in any manner whatsoever without the written permission of Mindray DS is strictly forbidden. Release, amendment, reproduction, distribution, rental, adaptation and translation of this manual in any manner whatsoever without the written permission of Mindray DS is strictly forbidden.

mindray is a trademark or a registered trademark of Shenzhen Mindray Bio-Medical Electronics Co., Ltd. All third-party trademarks that appear in this manual are used solely for editorial purposes and are the property of their respective owners.

Contents of this manual are subject to changes without prior notice.
Manufacturer’s Responsibility

All information contained in this manual is believed to be correct. Shenzhen Mindray Bio-Medical Electronics Co., Ltd. shall not be liable for errors contained herein nor for incidental or consequential damages in connection with the furnishing or use of this manual.

The manufacturer will not be liable for the effects on safety, reliability and performance of this product if:

- any installation operations, expansions, changes, modifications and repairs of this product are not conducted by Mindray authorized personnel; and
- the electrical installation of the relevant room does not comply with the applicable national and local requirements; and
- the product is not used in accordance with the instructions for use.

Warranty

This warranty is exclusive and is in lieu of all other warranties, expressed or implied, including warranties of merchantability or fitness for any particular purpose.

Exemptions

Mindray ’s obligation or liability under this warranty does not include any transportation or other charges or liability for direct, indirect or consequential damages or delay resulting from the improper use or application of the product or the use of parts or accessories not approved by Mindray or repairs by people other than Mindray authorized personnel.

This warranty shall not extend to

- Any Mindray product which has been subjected to misuse, negligence or accident; or
- Any Mindray product from which Mindray ’s original serial number tag or product identification markings have been altered or removed; or
- Any product of any other manufacturer.
Return Policy

In the event that it becomes necessary to return a unit to Mindray DS, follow the instructions below.

1. Return authorization.
 Contact the Customer Service Department and obtain a Customer Service Authorization number. This number must appear on the outside of the shipping container. Returned shipments will not be accepted if the number is not clearly visible. Please provide the model number, serial number, and a brief description of the reason for return.

2. Freight policy
 The customer is responsible for freight charges when this product is shipped to Mindray DS for service (this includes customs charges).

3. Return address
 Please send the part(s) or equipment to the address offered by the Customer Service Department.
Contact Information

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>Shenzhen Mindray Bio-Medical Electronics Co., Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td>Mindray Building, Keji 12th Road South, Hi-tech industrial park, Nanshan, Shenzhen 518057, P.R. China</td>
</tr>
<tr>
<td>Website:</td>
<td>www.mindray.com</td>
</tr>
<tr>
<td>E-mail Address:</td>
<td>service@mindray.com.cn</td>
</tr>
<tr>
<td>Tel:</td>
<td>+86 755 81888998</td>
</tr>
<tr>
<td>Fax:</td>
<td>+86 755 26582680</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distributor:</th>
<th>Mindray DS USA, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td>800 MacArthur Boulevard, Mahwah, New Jersey 07430 USA</td>
</tr>
<tr>
<td>Tel:</td>
<td>1.800.288.2121, 1.201.995.8000</td>
</tr>
<tr>
<td>Website:</td>
<td>www.mindray.com</td>
</tr>
</tbody>
</table>
Preface

Manual Purpose

This manual contains the instructions necessary to operate the product safely and in accordance with its function and intended use. Observance of this manual is a prerequisite for proper product performance and correct operation and ensures patient and operator safety.

This manual is based on the maximum configuration and therefore some contents may not apply to your product. If you have any question, please contact us.

This manual is an integral part of the product. It should always be kept close to the equipment so that it can be obtained conveniently when needed.

Intended Audience

This manual is geared for clinical professionals who are expected to have a working knowledge of medical procedures, practices and terminology as required for monitoring of critically ill patients.

Illustrations

All illustrations in this manual serve as examples only. They may not necessarily reflect the setup or data displayed on your patient monitor.

Conventions

- *Italic* text is used in this manual to quote the referenced chapters or sections.

Contents

1 Safety ... 1-1

1.1 Safety Information ... 1-1

 1.1.1 Dangers ... 1-2

 1.1.2 Warnings .. 1-2

 1.1.3 Cautions .. 1-3

 1.1.4 Notes .. 1-4

1.2 Equipment Symbols ... 1-5

2 The Basics .. 2-1

2.1 Monitor Description ... 2-1

 2.1.1 Intended Use ... 2-1

 2.1.2 Contraindications ... 2-1

 2.1.3 Components ... 2-1

 2.1.4 Functions .. 2-2

2.2 External Appearance ... 2-3

 2.2.1 Front Panel ... 2-3

 2.2.2 Left Side Panel ... 2-4

 2.2.3 Right Side Panel ... 2-5

 2.2.4 Rear Panel ... 2-6

2.3 Control Panel ... 2-7

2.4 Display .. 2-9

2.5 Batteries ... 2-11

 2.5.1 Battery Guidelines ... 2-12

 2.5.2 Battery Maintenance ... 2-13

 2.5.3 Battery Recycling ... 2-14

2.6 Wireless Network Card ... 2-15

3 Installation .. 3-1

3.1 Unpacking and Checking ... 3-1

3.2 Environmental Requirements ... 3-3

3.3 Power Source Requirements .. 3-3

3.4 Installation Method ... 3-4

 3.4.1 Bracket Mounting ... 3-4

 3.4.2 Connecting to AC Power Supply ... 3-4

 3.4.3 Connecting to DC Power Supply ... 3-4

 3.4.4 Installing the Battery .. 3-4

 3.4.5 Connecting Patient Sensors and Probes ... 3-5

 3.4.6 Connecting the Network Cable ... 3-5

 3.4.7 Auxiliary Output Port ... 3-5

 3.4.8 Connecting to VGA Monitor .. 3-6
3.4.9 Equipotential Grounding ... 3-6
3.4.10 CF Storage Card .. 3-7
3.5 Powering on the Monitor ... 3-8
3.6 Powering off the Monitor ... 3-8

4 System Menu ... 4-1
4.1 Overview ... 4-1
4.2 Patient Setup ... 4-2
 4.2.1 Admit Patient .. 4-3
 4.2.2 Quick Admit Patient ... 4-5
 4.2.3 Modify Patient ... 4-5
 4.2.4 Clear Patient Data ... 4-5
 4.2.5 Discharge Patient .. 4-6
4.3 Configuration Setup ... 4-6
4.4 System Setup ... 4-7
 4.4.1 Face Select .. 4-8
 4.4.2 Alarm Setup ... 4-8
 4.4.3 Time Setup .. 4-10
 4.4.4 Recorder Setup .. 4-11
 4.4.5 Data Output .. 4-13
 4.4.6 Analog Output ... 4-14
 4.4.7 Module Setup .. 4-15
 4.4.8 Trace Setup .. 4-16
 4.4.9 Mark Event .. 4-17
4.5 Selection Setup .. 4-18
4.6 Monitor Version .. 4-19
4.7 Maintenance .. 4-21
 4.7.1 Alarm Setup .. 4-24
 4.7.2 IP Address Setup ... 4-25
 4.7.3 Self Definition of Color .. 4-25
 4.7.4 Nurse Call Setup .. 4-26
 4.7.5 CO₂ User Maintain ... 4-27
 4.7.6 IBP Pressure Calibration .. 4-27
 4.7.7 Monitor Status ... 4-28
4.8 DEMO Function ... 4-29

5 Face Selection ... 5-1
5.1 Standard Screen ... 5-1
5.2 Trend Screen ... 5-2
5.3 OxyCRG Screen ... 5-3
5.4 Viewbed Screen ... 5-4
5.5 Large Font Screen .. 5-6
5.6 Standby Mode ... 5-7

6 Alarms .. 6-1
6.1 Overview .. 6-1
 6.1.1 Alarm Categories.. 6-1
 6.1.2 Alarm Levels.. 6-2
6.2 Alarm Modes .. 6-2
 6.2.1 Visual Alarms .. 6-3
 6.2.2 Audible alarms .. 6-3
 6.2.3 Alarm Messages ... 6-3
 6.2.4 Parameter Flashes .. 6-4
 6.2.5 Reminder Tones ... 6-4
6.3 Alarm Statuses ... 6-4
 6.3.1 Alarms Disabled .. 6-5
 6.3.2 Alarms Paused ... 6-5
 6.3.3 System Silenced ... 6-6
 6.3.4 Alarm Sound Off ... 6-6
 6.3.5 Status Switchover ... 6-6
6.4 Latching Alarms ... 6-7
6.5 Clearing Alarms ... 6-7
6.6 Testing Alarms ... 6-8
6.7 When an Alarm Occurs ... 6-8

7 Freezing Waveforms .. 7-1
7.1 Overview .. 7-1
7.2 Freezing and Unfreezing ... 7-1
7.3 FROZEN Menu ... 7-2
7.4 Waveform Recall .. 7-3
7.5 Recording Frozen Waveforms .. 7-3

8 Recording ... 8-1
8.1 Overview ... 8-1
8.2 Recording Types ... 8-1
8.3 Recorder Operations ... 8-3
8.4 Installing Recorder Paper ... 8-5

9 Recall .. 9-1
9.1 Overview ... 9-1
9.2 Trend Graph Recall .. 9-2
9.3 Trend Table Recall .. 9-4
9.4 NIBP Recall ... 9-6
9.5 Alarm Event Recall ... 9-7
9.6 Non-Volatile Data Storage ... 9-9
10 ECG/RESP Monitoring

10.1 Overview ... 10-1
10.2 ECG Monitoring Procedure .. 10-1
 10.2.1 Preparation ... 10-1
 10.2.2 Electrode Placement .. 10-2
 10.2.3 Characteristics of Quality ECG Signal 10-6
10.3 ECG Display ... 10-7
 10.3.1 ECG Waveform ... 10-7
 10.3.2 ECG Parameters .. 10-8
10.4 ECG Setup Menu .. 10-9
10.5 ST Analysis ... 10-16
 10.5.1 Overview .. 10-16
 10.5.2 3/5-Lead ST Analysis Menu .. 10-17
 10.5.3 Adjusting ST Measurement Point 10-18
10.6 Arrhythmia Analysis .. 10-20
 10.6.1 Overview .. 10-20
 10.6.2 Arrhythmia Options .. 10-21
 10.6.3 Arrhythmia Analysis Menu .. 10-22
 10.6.4 Arrhythmia Relearn .. 10-23
 10.6.5 Arrhythmia Alarm Setup .. 10-23
 10.6.6 Arr Threshold .. 10-25
 10.6.7 Arrhythmia Recall .. 10-26
10.7 RESP Monitoring .. 10-28
 10.7.1 Overview .. 10-28
 10.7.2 Electrode Placement .. 10-29
 10.7.3 Respiration Setup .. 10-30
10.8 Maintenance and Cleaning .. 10-32

11 SpO2 Monitoring .. 11-1
11.1 Overview ... 11-1
11.2 Mindray DS SpO2 Module .. 11-2
 11.2.1 Principles of Operation .. 11-2
 11.2.2 Precautions .. 11-3
 11.2.3 Monitoring Procedure .. 11-3
 11.2.4 Measurement Limitations ... 11-6
 11.2.5 SpO2 Setup Menu ... 11-7
11.3 Nellcor SpO2 Module ... 11-9
 11.3.1 Principles of Operation .. 11-9
 11.3.2 Precautions .. 11-12
 11.3.3 Monitoring Procedure .. 11-13
 11.3.4 Measurement Limitations ... 11-13
 11.3.5 SpO2 Setup Menu ... 11-14
11.3.6 Accessories ... 11-16
11.3.7 Nellcor Information ... 11-17

12 NIBP Monitoring ... 12-1
12.1 Overview ... 12-1
12.2 Monitoring Procedure .. 12-2
 12.2.1 Cuff Selection and Placement ... 12-3
 12.2.2 Operation Guides ... 12-4
12.3 Measurement Limitations .. 12-5
12.4 NIBP Setup Menu ... 12-6
 12.4.1 Calibration .. 12-9
 12.4.2 Testing for Air Leakage .. 12-10
12.5 Maintenance and Cleaning ... 12-11

13 TEMP Monitoring ... 13-1
13.1 Overview ... 13-1
13.2 Measurement Procedure ... 13-2
13.3 TEMP Setup Menu ... 13-3
13.4 Maintenance and Cleaning ... 13-4

14 IBP Monitoring ... 14-1
14.1 Overview ... 14-1
14.2 Precautions .. 14-2
14.3 Monitoring Procedure .. 14-3
14.4 IBP Menu .. 14-4
 14.4.1 IBP Setup Menu ... 14-4
 14.4.2 IBP Pressure Zero Menu ... 14-8
14.5 Maintenance and Cleaning ... 14-10

15 CO₂ Monitoring .. 15-1
15.1 Overview ... 15-1
15.2 Mindray DS CO₂ Module .. 15-2
 15.2.1 Principles of Operation ... 15-2
 15.2.2 Preparations for CO₂ Measurement .. 15-3
 15.2.3 CO₂ Setup Menu .. 15-5
 15.2.4 CO₂ User Maintain Menu .. 15-9
 15.2.5 Maintenance and Cleaning ... 15-11
15.3 Oridion CO₂ Module .. 15-12
 15.3.1 Principles of Operation .. 15-12
 15.3.2 Preparations for CO₂ Measurement .. 15-13
 15.3.3 CO₂ Setup Menu .. 15-14
 15.3.4 CO₂ User Maintain Menu .. 15-17
 15.3.5 Maintenance and Cleaning ... 15-18
15.3.6 Oridion Information ... 15-19
15.4 Removing Exhaust Gases from the System 15-19

16 Maintenance .. 16-1
16.1 Inspection and Maintenance .. 16-1
16.2 Cleaning .. 16-2
16.3 Disinfection and Sterilization ... 16-3

17 Accessories ... 17-1
17.1 ECG Accessories ... 17-1
17.2 SpO2 Accessories ... 17-3
17.3 NIBP Accessories ... 17-4
17.4 TEMP Accessories ... 17-4
17.5 IBP Accessories ... 17-5
17.6 CO2 Accessories ... 17-6
17.7 Others .. 17-6

A Product Specifications ... A-1
A.1 Safety Classifications ... A-1
A.2 Environmental Specifications .. A-1
A.3 Power Source Specifications .. A-2
A.4 Hardware Specifications .. A-3
A.5 Data Storage ... A-4
A.6 Wireless Network .. A-4
A.7 Signal Output Specifications ... A-4
A.8 ECG Specifications ... A-5
A.9 RESP Specifications ... A-10
A.10 SpO2 Specifications ... A-11
A.11 NIBP Specifications ... A-13
A.12 TEMP Specifications ... A-14
A.13 IBP Specifications ... A-14
A.14 CO2 Specifications ... A-15

B EMC .. B-1

C Alarm Messages and Prompt Information C-1
C.1 Physiological Alarm Messages .. C-1
C.2 Technical Alarm Messages ... C-2
C.3 Prompt Messages .. C-14

D Symbols and Abbreviations ... D-1
D.1 Symbols .. D-1
D.2 Abbreviations .. D-3
1 Safety

1.1 Safety Information

The safety statements presented in this chapter refer to the basic safety information that the operator of the patient monitor shall pay attention to and abide by. There are additional safety statements in other chapters or sections, which may be the same as or similar to the followings, or specific to the operations.

⚠️ DANGER

- Indicates an imminent hazard situation that, if not avoided, will result in death or serious injury.

⚠️ WARNING

- Indicates a potential hazard situation or unsafe practice that, if not avoided, could result in death or serious injury.

⚠️ CAUTION

- Indicates a potential hazard or unsafe practice that, if not avoided, could result in minor personal injury or product/property damage.

NOTE

- Provides application tips or other useful information to ensure that you get the most from your product.
1.1.1 Dangers

There are no dangers that refer to the product in general. Specific “Danger” statements may be given in the respective sections of this operation manual.

1.1.2 Warnings

⚠️ WARNING

- The device is intended for use by qualified clinical physicians or well-trained nurses in the specified places.
- To ensure patient safety, verify the device and accessories can function safely and normally before use.
- EXPLOSION HAZARD: Do not use this device in the presence of flammable anesthetics, explosive substances, vapors or liquids.
- You must customize the alarm settings according to the individual patient situation, and make sure the alarm sound is activated when an alarm occurs.
- ELECTRIC SHOCK: Do not open the monitor housing. All servicing and future upgrades to this device must be carried out by personnel trained and authorized by our company only.
- DEFIBRILLATION: Do not come into contact with the patient during defibrillation. Otherwise serious injury or death could result.
- When used in conjunction with electro-surgery equipment, you must give top priority to the patient safety. To prevent unwanted skin burns caused by leakage current, applying the electrode, transducer and the cable as far as possible from the high frequency surgical equipment, a distance of least 15cm/6in. is recommended.
- DISPOSE: Dispose of the package material, observing the applicable waste control regulations and keeping it out of children’s reach.
- The device must be connected to a properly installed power outlet with protective earth contacts only. If the installation does not provide for a protective earth conductor, disconnect the monitor from the power line and operate it on battery power, if possible.
- The aging of the test equipment and the change of environment may have effects on the measuring results of the monitor.
1.1.3 Cautions

⚠️ CAUTION

- To ensure patient safety, use only parts and accessories specified in this manual.
- Remove the battery from the patient monitor if it will not be used or not be connected to the power line for a long period.
- Disposable devices are intended for single use only. They should not be reused as performance could degrade or contamination could occur.
- At the end of its service life, the product described in this manual, as well as its accessories, must be disposed of in compliance with the guidelines regulating the disposal of such products. If you have any questions concerning disposal of the products, please contact with us.
- Magnetic and electrical fields are capable of interfering with the proper performance of the device. For this reason make sure that all external devices operated in the vicinity of the monitor comply with the relevant EMC requirements. Mobile phone, X-ray equipment or MRI devices are a possible source of interference as they may emit higher levels of electromagnetic radiation.
- Before connecting the patient monitor to the power line, check that the voltage and frequency ratings of the power line are the same as those indicated on the label or in this manual.
- Install or carry the patient monitor properly to avoid damages caused by drop, impact, strong vibration or other mechanical force.
1.1.4 Notes

NOTE

- Keep this manual close to the patient monitor so that it can be obtained conveniently when necessary.
- This patient monitor complies with the requirements of CISPR11 (EN55011) class A.
- The software was developed per IEC601-1-4. The possibility of hazards arising from errors in software program is minimized.
- Put the patient monitor in a location where you can easily see the screen and access the operating controls.
- The instructions of this manual are based on the maximum configuration. Some of them may not apply to your patient monitor.
1.2 Equipment Symbols

NOTE

- Some symbols may not appear on your equipment.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Warning]</td>
<td>Attention: Consult accompanying documents (this manual).</td>
</tr>
<tr>
<td>![Power ON/OFF]</td>
<td>Power ON/OFF</td>
</tr>
<tr>
<td>![Power ON/OFF]</td>
<td>Power ON/OFF</td>
</tr>
<tr>
<td>![Alternating current (AC)]</td>
<td>Alternating current (AC)</td>
</tr>
<tr>
<td>![Battery indicator]</td>
<td>Battery indicator</td>
</tr>
<tr>
<td>![Type CF]</td>
<td>Type CF applied part. The unit displaying this symbol contains an F-type isolated (floating) patient part providing a high degree of protection against shock, and is suitable for use during defibrillation.</td>
</tr>
<tr>
<td>![Equipotentiality]</td>
<td>Equipotentiality</td>
</tr>
<tr>
<td>![Auxiliary output]</td>
<td>Auxiliary output</td>
</tr>
<tr>
<td>![Network connector]</td>
<td>Network connector</td>
</tr>
<tr>
<td>![VGA connector]</td>
<td>VGA connector</td>
</tr>
<tr>
<td>![AG module connector]</td>
<td>AG module connector</td>
</tr>
<tr>
<td>![Gas inlet]</td>
<td>Gas inlet</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Gas outlet</td>
</tr>
<tr>
<td></td>
<td>ESD sensitivity</td>
</tr>
<tr>
<td></td>
<td>Manufacture date</td>
</tr>
<tr>
<td></td>
<td>Serial number</td>
</tr>
</tbody>
</table>

The following definition of the WEEE label applies to EU member states only.

This symbol indicates that this product should not be treated as household waste. By ensuring that this product is disposed of correctly, you will help prevent bringing potential negative consequences to the environment and human health. For more detailed information with regard to returning and recycling this product, please consult the distributor from whom you purchased it.

* For system products, this label may be attached to the main unit only.

The machine has only one of the certification labels below. Please refer to the label attached to the machine to determine the applicable certification label.

<table>
<thead>
<tr>
<th>Certification Label</th>
<th>Certification Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The presence of this label indicates the machine was certified by ETL with the statement: CONFORMS TO UL STD 60601-1, IEC 60601-2-27, IEC 60601-2-30, IEC 60601-2-34, IEC 60601-2-49, IEC60601-1-1, CERTIFIED TO CSA STD C22.2 NO 601.1, NO 60601-2-27, NO 60601-2-30, NO 60601-2-34, NO 60601-2-49, CSA STD C22.2 NO 601-1-1</td>
</tr>
<tr>
<td></td>
<td>Classified by Underwriters Laboratories Inc. with respect to electric shock, fire and mechanical hazards, only in accordance with UL 60601-1, CAN/CSA C22.2 NO.601-1, IEC 60601-1-1, IEC 60601-2-27, IEC 60601-2-30, IEC 60601-2-34, IEC 60601-2-49.</td>
</tr>
</tbody>
</table>
The Basics

2.1 Monitor Description

This monitor integrates the functions of parameter measurement, waveform monitoring, freezing, and recording, etc. Its color TFT liquid crystal display is able to show patient parameters and waveforms clearly. The monitor also features compact size, lightweight, easy-to-carry handle and built-in battery, which make it portable, especially in hospital transport. The compact control panel and control knob, and the easy-to-use menu system enable you to freeze, record, or perform other operations conveniently. Besides, this monitor can be connected with the central monitoring system whereby a monitoring network will be formed.

2.1.1 Intended Use

This monitor is intended to be used for monitoring, recording, and alarming of multiple physiological parameters (see 2.1.4 Functions) on single adult, pediatric and neonate patient. For arrhythmia detection and ST Segment analysis, the target populations are adult and pediatric only.

This monitor is to be used in healthcare facilities by trained clinical physicians or appropriate medical staff under the direction of physicians. It is not intended for out-of-hospital transfer or home use.

⚠️ WARNING

- The operator of the monitor must be well trained. Any operation by unauthorized or non-trained personnel is forbidden.
- The physiological waveforms and parameters and the alarm information displayed by the monitor are only for the reference of physicians, but cannot be used directly to determine the clinical treatment.

2.1.2 Contraindications

None.

2.1.3 Components

This monitor consists of parameter measuring modules, blood pressure cuff, ECG and IBP cables, SpO₂ sensors, and CO₂ measuring components. Some of the components are optional and may not apply to your patient monitor.
2.1.4 Functions

This monitor is capable of monitoring the following parameters.

- **ECG**
 - Heart rate (HR)
 - ECG waveform(s)
 - ST segment analysis
 - Arrhythmia analysis

- **RESP**
 - Respiration rate (RR)
 - Respiration waveform

- **SpO₂**
 - Pulse oxygen saturation (SpO₂)
 - Pulse rate (PR)
 - SpO₂ plethysmogram

- **NIBP**
 - Systolic pressure (NS), diastolic pressure (ND), mean pressure (NM)
 - Pulse rate (PR)

- **TEMP**
 - Temperature of channel 1 (T1), temperature of channel 2 (T2)
 - Temperature differential between two channels (TD)

- **IBP**
 - 2 channels of IBP waveforms
 - Systolic (SYS), diastolic (DIA), and mean (MEAN) pressure
 - Pulse rate (PR).

- **CO₂**
 - End-tidal carbon dioxide (EtCO₂)
 - Fractional inspiratory carbon dioxide (FiCO₂)
 - Air-way Respiration Rate (AwRR)
2.2 External Appearance

2.2.1 Front Panel

This monitor is designed to comply with the requirements of relative international safety standards (IEC60601-1, EN60601-2-27 and EN60601-2-30) for medical electrical equipment. This monitor has floating inputs and is protected against the effects of defibrillation and electrosurgery. When proper electrodes are used and applied according to the manufacturer instructions, the screen display will recover within 10 seconds after defibrillation.

The alarm indicator of this monitor complies with the requirement of EN60825-1 A11 Class 1 for LED. The LED indicator varies its flash color and frequency to indicate different alarm levels.

WARNING

- Move or lift the monitor by the handle only. Do not use the patient cable or the power cord to move or lift the monitor. It might cause the monitor to fall, which might damage the monitor or injure the patient.
2.2.2 Left Side Panel

1. CF storage card connector
2. Recorder
3. Battery door

Figure 2-2 Left Side Panel
2.2.3 Right Side Panel

Figure 2-3 Right Side Panel (Oridion CO2)

Figure 2-4 Right Side Panel (Mindray DS CO2)

1. T1: Temperature probe connector (channel 1)
2. T2: Temperature probe connector (channel 2)
3. IBP1: IBP transducer connector (channel 1)
4. IBP2: IBP transducer connector (channel 2)
5. SpO2: SpO2 sensor connector
6. ECG: ECG cable connector
7. Exhaust outlet
8. CO2: CO2 sensor connector (Oridion)
9. NIBP: NIBP cuff hose connector
10. CO2: CO2 gutter connector (Mindray DS)
NOTE

- Some modules are optional. Their connectors may not be available on your patient monitor.

2.2.4 Rear Panel

1. Fan Vent
2. Speaker holes
3. Mounting holes for support bracket.
 Through network connector, this monitor can be connected with the central monitoring system, another monitor, or a PC. It enables the functions of viewbed monitoring, data output and on-line software upgrading.
5. AC Power Input Connector
 A three-wire power cord can be connected to this receptacle to provide AC power supply to the patient monitor.
6. Connector for extension
7. VGA Monitor Connector
 A standard color VGA monitor can be connected to the patient monitor through this connector.
 It is the common interface of analog output signals, nurse call output signals or defibrillator
 synchronization signals. You can manually select the function of this port in the USER
 MAINTAIN menu.

9. Equipotential grounding connector

WARNING

- Accessory equipments connected to this patient monitor must be certified
 according to the respective IEC standards (e.g. IEC 60950 for information
 technology equipment and IEC 60601-1 for medical electrical equipment).
 Furthermore all configurations shall comply with the valid version of the system
 standard IEC 60601-1-1. Any person who connects additional equipment to the
 signal input or signal output is responsible to ensure the system complies with the
 requirements of the valid version of the system standard IEC 60601-1-1. If in
 doubt, contact our company or customer service.

2.3 Control Panel

![Figure 2-6 Control Panel](image)

1. **Power switch**
 This key turns the monitor ON and OFF. To turn OFF the monitor, please press this key and
 hold for more than 2 seconds.

2. **AC power indicator**
 - **ON**: AC power is applied to the monitor.
 - **OFF**: AC power is not applied to the monitor.
3. Battery indicator
 The battery indicator tells the battery status. See 2.5 Batteries for more information.

4. FREEZE
 This key is pressed to freeze and unfreeze waveforms.

5. SILENCE
 You can press this key to pause alarms, silence the monitor or clear alarms. You can also
 switch between different alarm statuses through this key.

6. RECORD
 Press this key to start or stop recording.

7. NIBP
 Press this key to start or stop the non-invasive blood pressure measurement.

8. Control Knob
 The main operator control is the control knob. The control knob rotates in either direction to
 highlight parameter labels and menu options. After highlighting the desired selection, press
 the control knob to execute an operation, make a selection, view a new menu or a small
 drop-down list. This procedure is referred to as “select” through out the manual. Remember
 rotate to highlight, and then press to select.
2.4 Display

This monitor has a color TFT LCD display of high resolution. It is able to display patient parameters and waveforms clearly. The following is the standard interface when the monitor is operating normally.

![Figure 2-7 Main Screen](image)

1. Patient information area

 It displays patient bed number and patient type. If no patient is admitted, it displays “NO PATIENT ADMITTED”. If the patient’s information is incomplete, corresponding symbols will be displayed.

2. System time

 The system time of the monitor is displayed in two lines. The time format can be set in the TIME SETUP menu.

3. Technical alarms area

 Technical alarm messages or prompt information are displayed in this area. In case of multiple messages, they will be displayed alternately. This area shows the patient name and sex when no message is to be displayed.
4. Sound icon

⚠️ Alarms Paused; 🚨 System Silenced; ⏰ Alarm Sound Off. No icon is displayed under normal status.

5. Physiological alarms area

Physiological alarm messages are displayed in this area. In case of multiple messages, they will be displayed alternately.

6. Waveforms area

This area shows the waveforms of physiological parameters. The label of a waveform is displayed on the upper left.

7. Parameter windows

The parameter windows are located on the right of the waveform area, and are divided by white lines. Each window is identified by a parameter label on the upper left. You may select a parameter label to open the setup menu of this parameter. Each of the parameter is described in more detail in the following chapters.

8. Prompt information area

This area shows the prompt messages and network status icons. Upon turning ON the monitor, prompt information, for example “NIBP alarm disabled”, will cover the network icon.

9. Battery symbol

10. STANDBY label

You may select this label to enter the standby mode.

11. MENU label

You can select this label to enter SYSTEM MENU.
2.5 Batteries

This monitor is designed to operate on battery (sealed lead-acid or Lithium Ion battery) power during intra-hospital patient transfer or whenever the power supply is interrupted. The battery is charged automatically when the monitor is connected to AC power, no matter the monitor is powered on or not. Whenever the AC power is interrupted during patient monitoring, the patient monitor will automatically run power from the internal batteries.

Sealed acid batteries and Lithium Ion batteries are differentiated by their contacts, as shown below.

![Battery Comparison](image)

Sealed lead-acid battery Lithium Ion battery Lithium Ion battery

The battery symbol displayed on the main screen tells the status of the battery.

- ![Battery Symbol](image)
 - The battery is installed in the battery slot.
 - The solid part indicates its capacity.
- ![Battery Symbol](image)
 - No battery is installed in the battery slot.

Besides, the battery indicator also indicates the status of the battery.

- **ON:** The battery is being charged or the battery is fully charged.
- **OFF:** No battery is installed. If the battery is installed but the monitor is not connected to AC power and not turned on, the indicator will also be off.
- **Flashes:** The monitor is powered by the internal battery.

The capacity of the internal battery is limited. When the battery capacity is too low, a high level alarm is triggered and the “Battery too low” message is given in the technical alarms area. At this moment, the AC power shall be applied to the monitor.
2.5.1 Battery Guidelines

Life expectancy of a battery depends on how frequent and how long it is used. For a properly maintained and stored lead-acid or lithium ion battery, its life expectancy is about 2 or 3 years respectively. For more aggressive use models, life expectancy can be less. We recommend replacing lead acid batteries every 2 years and lithium ion batteries every 3 years.

To get the most out of the battery, observe the following guidelines:

- The battery performance test must be performed every two years, before monitor repairs, or whenever the battery is suspected as being the source of the problems.
- Condition a battery once when it is used or stored for 3 months, or when its operating time becomes noticeably shorter.
- Take out the battery before the monitor is transported or will not be used for more than 3 months.
- Remove the battery from the monitor if it is not being used regularly. (Leaving the battery in a monitor that is not in regular use will shorten the life of the battery).
- The shelf-life of a fully charged sealed lead acid battery is about 6 months and in 6 months the battery must be fully charged for storage. The shelf life of a Lithium Ion battery is about 6 months when the battery is stored with the battery power being 50% (represented by the battery symbol \[\frac{1}{2}\]) of the total power. In 6 months the battery power must be depleted before the Lithium Ion battery is fully charged. Then run the monitor on this fully charged battery. When its battery power becomes 50% of the total power, take out the battery from the monitor and store it.

WARNING

- Keep the battery out of the reach of children.
- Use only the battery specified by the manufacturer.
- If the battery shows signs of damage or signs of leakage, replace it immediately. Do not use a faulty battery in the monitor.
2.5.2 Battery Maintenance

Conditioning a Battery

A battery should be conditioned before it is used for the first time. A battery conditioning cycle is one uninterrupted charge of the battery, followed by an uninterrupted battery discharge and charge. Batteries should be conditioned regularly to maintain their useful life.

NOTE

- Condition a battery once when it is used or stored for 3 months, or when its operating time becomes noticeably shorter.
- The actual battery capacity will decrease over time with use of batteries. When a monitor operates on batteries that have been used before, the full capacity battery symbol does not indicate the capacity and operating time of this battery can still fulfill battery specifications in the operator’s manual. When conditioning a battery, please replace the battery if its operating time is significantly lower than the specified time.

To condition a battery, follow this procedure:
1. Disconnect the monitor from the patient and stop all monitoring or measuring.
2. Insert the battery in need of conditioning in the battery slot of the monitor, and leave the other slot empty if your monitor has two slots.
3. Apply AC power to the monitor and allow the battery to charge uninterrupted for 10 hours.
4. Remove AC power and allow the monitor to run from the battery until it shuts off.
5. Apply AC power again to the monitor and allow the battery to charge uninterrupted for 10 hours.
6. This battery is now conditioned and the monitor can be returned to service.

Checking a Battery

The battery performance test must be performed every two years, before monitor repairs, or whenever the battery is suspected as being the source of the problems. The performance of a rechargeable battery may deteriorate over time. To check the performance of a battery, follow this procedure:
1. Disconnect the monitor from the patient and stop all monitoring or measuring.
2. Apply AC power to the monitor and allow the battery to charge uninterrupted for 10 hours.
3. Remove AC power and allow the monitor to run from the battery until it shuts off.
4. The operating time of battery reflects its performance directly.

If your monitor has two battery slots, you can check two batteries at the same time. Please replace the battery or contact with the maintenance personnel if its operating time is significantly lower than the specified time.
NOTE

- The battery might be damaged or malfunctioned if its operating time is too short after being fully charged. The operating time depends on the configuration and operation. For example, measuring NIBP more frequently will also shorten the operating time.
- When a battery has visual signs of damage, or no longer holds a charge, it should be replaced. Remove the old battery from the monitor and recycle it properly.

2.5.3 Battery Recycling

When a battery has visual signs of damage, or no longer holds a charge, it should be replaced. Remove the old battery from the monitor and recycle it properly. To dispose of the batteries, follow local laws for proper disposal.

WARNING

- Do not disassemble batteries, or dispose of them in fire, or cause them to short circuit. They may ignite, explode, leak or heat up, causing personal injury.
2.6 Wireless Network Card

This monitor can be configured with a wireless network card, which is connected to the CMS (Central Monitoring System) in the wireless mode and constructs with the CMS the monitoring network.

You only need to insert the network cable into the network connector. The following figure shows the wireless network card correctly installed.

In front of the wireless network card are three indicators that indicating its working status:

- **POWER indicator**
 - **OFF:** The wireless network card is off or the patient monitor is off.
 - **Flashing:** The wireless network card is resetting to the default.
 - **ON:** The wireless network card is on and ready.

- **WIRELESS/WLAN indicator**
 - **OFF:** The wireless network card is off or not associated with any access point.
 - **Flashing:** The wireless network card is associating or transmitting wireless data.
 - **ON:** The wireless network card is associated with an access point.

- **DATABASE/LAN indicator**
 - **OFF:** The wireless network card is off or not connected to an Ethernet network.
 - **ON:** The wireless network card is connected to an Ethernet network.

The radio device used in the monitor is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC (Radio Equipment and Telecommunications Terminal Equipment Directive).
NOTE

- The wireless network card is connected to the patient monitor via 5V power supply and a network port in the monitor. The 5V power supply is the only way for powering the wireless card, and the network port is used to get clinical data for wireless transmission. Please verify the connections before using the wireless network.

- The design, installation, restoration and maintenance of the wireless network’s distribution shall be performed by authorized service personnel of our company.

- The existence of obstacles (such as wall) will exert impact on data transferring or even cause network interruption.

- The Central Monitoring System is capable of connecting up to 16 bedside monitors via the wireless network.
3 Installation

WARNING

- The installation of the monitor must be carried out by personnel authorized by us. The software copyright of the monitor is solely owned by our company. Any action to change, copy or exchange the software copyright by any organization or person is regarded as copyright infringement and is not allowed.

- Accessory equipments connected to this patient monitor must be certified according to the respective IEC standards (e.g. IEC 60950 for information technology equipment and IEC 60601-1 for medical electrical equipment). Furthermore all configurations shall comply with the valid version of the system standard IEC 60601-1-1. Any person who connects additional equipment to the signal input or signal output is responsible to ensure the system complies with the requirements of the valid version of the system standard IEC 60601-1-1. If in doubt, contact our company or customer service.

- If the monitor is connected to another electrical instrument and the instrument specifications cannot tell whether the instrument combination is hazardous (e.g. due to summation of leakage currents), you should consult us or experts in the field to ensure the required safety of all instruments concerned.

NOTE

- The operations in this section are not all required. User-customized installation by authorized personnel is provided.

3.1 Unpacking and Checking

Before unpacking, examine the packing case carefully for signs of damage. If any damage is detected, contact the carrier or our company.

If the packing case is intact, open the package and remove the instrument and accessories carefully. Check all materials against the packing list and check for any mechanical damage. Contact our Customer Service Department in case of any problem.

NOTE

- Please save the packing case and packaging material for future transport and storage.
3.2 Environmental Requirements

The operating environment of the monitor must meet the requirements specified in this manual.

The environment where this monitor is to be used should be free from noise, vibration, dust, and corrosive or explosive and inflammable substances. For a cabinet mounted installation, allow sufficient room at the front and the rear of the cabinet for operation, maintenance and servicing. Besides, allow at least 2 inches clearance around the instrument for proper air circulation.

Condensation can form when the monitor is moved from one location to another, and being exposed to differences in humidity or temperature. Make sure that during operation the instrument is free from condensation.

3.3 Power Source Requirements

The power applied to the monitor must meet the requirements specified in this manual.

WARNING

- Make sure that the operating environment and the power applied to the patient monitor complies with the specified requirements. Otherwise its performance might not meet the specifications claimed in this manual, and unexpected results, such as damages to the patient monitor, may be incurred.
- The monitor shall be powered according to the requirement for the system power voltage. Otherwise, serious damage might be caused to the system.
3.4 Installation Method

3.4.1 Bracket Mounting

For details, please refer to the corresponding instructions for use of bracket mounting.

3.4.2 Connecting to AC Power Supply

1. Use the original three-wire AC power cord.
2. Connect the power cord to the receptacle for AC power cord on the rear panel of the monitor.
3. Connect the other end of the power cord to a compatible 3-prong hospital grade AC power outlet.

The 3-prong power outlet must be ground. If it is doubted, contact related personnel of the hospital.

⚠️ WARNING

- Do not use three-wire to two-wire adapter with this instrument.
- To avoid unexpected power interruption, do no use power outlet with a wall-mounted switch control.

3.4.3 Connecting to DC Power Supply

Select the specified DC-AC inverter which is in compliance with IEC60950. Install and use the inverter by referring to the DC-AC inverter’s Instructions for Use.

3.4.4 Installing the Battery

If the monitor is to be powered by the internal battery, install the battery following the steps as below:

1. Slide the battery door toward the rear of the monitor to open it.
2. Press the battery catch to the upper using one finger.
3. Insert the battery into the battery slot per the “+” and “-” indications.
4. Release the battery catch, and it will fix the battery.
5. Close the battery door.

⚠️ WARNING

- Make sure the battery door is securely latched. Falling batteries could seriously or fatally injure a patient.
3.4.5 Connecting Patient Sensors and Probes

Connect the necessary patient sensors or probes to the monitor. For details, see the chapters for specific parameter monitoring in the following pages, or corresponding instructions for sensors and probes.

3.4.6 Connecting the Network Cable

The network connector of the monitor is a standard RJ45 connector. It connects the monitor with the central monitoring system, or with a PC for online upgrading or data output. It can also connect with another patient monitor for viewbed monitoring.

1. Connect one end of the network cable with the network connector of the monitor.
2. Connect the other end of the network cable with the hub or switch of the central monitoring system, or with the network connector of a PC, or with the network connector of another patient monitor.

NOTE

- Different network cable may be used for different connections. Please consult our customer service personnel for details.
- The system upgrading through the network connector is to be executed by our authorized personnel only.

3.4.7 Auxiliary Output Port

The auxiliary output port can be used to generate analog signals, nurse call signals or defibrillator synchronization signals.

- Analog output signals can be generated when the monitor is connected to an oscilloscope or a pen recorder.
- If the monitor is connected with the Nurse Call System of a hospital through a special nurse call cable, the monitor can generate nurse call signals when alarms occur.
- If the monitor is connected with a defibrillation equipment, the monitor can generate defibrillator synchronization signals to the defibrillation equipment.

NOTE

- For detailed connection methods of different uses, please consult the specialist in your hospital, or our Customer Service.
- The nurse call cable has two non-polarized conductors at the output end. The installation should be performed by our servicing engineers or engineers of the hospital according to the specific nurse call system of the hospital.

⚠️ **WARNING**

- Before defibrillating the patient, the user should ensure the defibrillator and the monitor have been tested as a system and the two devices can work together safely and effectively.

3.4.8 Connecting to VGA Monitor

This monitor can be connected with a standard color VGA monitor. The VGA monitor will display the patient waveforms and parameters measured by the patient monitor. To connect the patient monitor with the VGA monitor, follow the steps as below.

1. Power off the patient monitor.
2. Connect the signal cable of the VGA monitor to the VGA connector on the rear panel of the patient monitor.
3. Power on the VGA monitor and then the patient monitor.

NOTE

- The VGA monitor should be installed at a distance of more than 1.5 m from the patient.

3.4.9 Equipotential Grounding

When other equipments are used together with the monitor, a grounding cable should be used to connect the equipotential grounding connectors of the monitor and of other equipments. This helps to reduce the potential differences between different pieces of equipment, and ensure the safety of the operator and patient.

⚠️ **WARNING**

- If the grounding system is in doubt, the monitor must be supplied from its internal battery.
3.4.10 CF Storage Card

1. Power off the monitor;
2. Press down the lever (See Figure 1).
3. Take out the model card (See Figure 2).
4. Plug the CF storage card (See Figure 3).
5. The lever will then bounce out (See Figure 4).

To unplug the CF storage card, follow the procedure below:
1. Power off the monitor.
2. Press down the lever (See Figure 1).
3. Unplug the CF storage card.
4. Plug the model card.

⚠️ Caution

- DO NOT plug or unplug the CF storage card when the monitor is powered on.
3.5 Powering on the Monitor

After installing the monitor, please follow the procedures described below to power on the monitor:

1. Before using the monitor, please carry out corresponding safety inspection as given in 16.1 Inspection.
2. Press the Power Switch on the control panel. The alarm indicator will flash once in yellow and red. Then, a beep will be heard.
3. The system begins self-testing and the product model will be displayed on the screen.
4. Several seconds later, the system finishes the self-test and displays the main screen.
5. The system will initiate every module, and display “XX alarm disabled!” information in the lower left part of the screen. “XX” represents the name of every module, such as NIBP, RESP etc.
6. At this time, you can operate the monitor using the control panel. “XX alarm disabled!” information will disappear a few seconds later.

NOTE

- During initialization process, alarms of every module detected by the system are useless, and thereby are disabled.

3.6 Powering off the Monitor

To power off the monitor, please follow the procedures below:

1. Confirm the patient monitoring is to be finished.
2. Disconnect the cables and sensors between the monitor and the patient.
3. Confirm whether to store or clear the patient monitoring data.
4. Press the Power switch for more than 2 seconds, and the monitor will be powered off.
4 System Menu

4.1 Overview

This chapter only gives introduction to the system menu. Other menus will be described in the following chapters.

![System Menu](image)

Most menus displayed by the monitor share the same structure. As shown above, a menu is made up of four parts:

1. Menu title: Summarizes the content of the current menu.
2. Main display area: Displays options, keys or prompt information, etc. “>>” means a submenu will pop up if the option is selected.
3. Online help: The help information changes with the highlighted selection.
4. Exit key: Exits from the current menu.

Some menus do not have the EXIT key. Instead, a YES and a NO key or a CONFIRM and a CANCEL key are provided. You can confirm the operations with these keys.

NOTE

- Your monitor may not include all options described in this chapter.
4.2 Patient Setup

Select PATIENT SETUP>> in SYSTEM MENU. The following menu appears.

<table>
<thead>
<tr>
<th>PATIENT SETUP</th>
<th>PATIENT SETUP</th>
<th>PATIENT SETUP</th>
<th>PATIENT SETUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAT NO</td>
<td>PAT NO</td>
<td>PAT NO</td>
<td>PAT NO</td>
</tr>
<tr>
<td>DOCTOR</td>
<td>DOCTOR</td>
<td>DOCTOR</td>
<td>DOCTOR</td>
</tr>
<tr>
<td>NAME</td>
<td>NAME</td>
<td>NAME</td>
<td>NAME</td>
</tr>
<tr>
<td>SEX</td>
<td>SEX</td>
<td>SEX</td>
<td>SEX</td>
</tr>
<tr>
<td>PAT TYPE</td>
<td>PAT TYPE</td>
<td>PAT TYPE</td>
<td>PAT TYPE</td>
</tr>
<tr>
<td>BLOOD</td>
<td>BLOOD</td>
<td>BLOOD</td>
<td>BLOOD</td>
</tr>
<tr>
<td>PATIENT DATA</td>
<td>QUICK ADMIT PATIENT</td>
<td>ADMIT PATIENT</td>
<td>MODIFY PATIENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-2 Patient Setup Menu

This menu displays the patient’s information, as well as four buttons located below. If no patient is admitted, the buttons are:

- CLEAR PATIENT DATA
- QUICK ADMIT PATIENT
- ADMIT PATIENT
- MODIFY PATIENT

If a patient is admitted, the CLEAR PATIENT DATA button turns to be DISCHARGE PATIENT.
4.2.1 Admit Patient

To admit a new patient, please follow this procedure:

1. Select ADMIT PATIENT in PATIENT SETUP menu.
2. Select YES in the pop-up CONFIRM TO CLEAR THE DATA menu. The menu as shown below appears.

![Patient Information Setup](image)

Figure 4-3 Patient Information Setup

3. Enter the patient’s information details. If the patient’s information is entered incompletely, corresponding symbols `?` will appear in the upper left hand of the monitor screen.

- **PAT NO**: Patient identification number;
- **DOCTOR**: Name of the doctor;
- **NAME**: Patient name;
- **SEX**: Patient gender: “F” for female; “M” for male;
- **PAT TYPE**: Patient type: ADU, PED and NEO (short for adult, pediatric and neonate);
- **PACE**: Turn ON or OFF the pace analysis function;
- **ADMIT**: The time when the patient is admitted: year-month-day;
- **BIRTH**: Patient date of birth: year-month-day;
- **HEIGHT**: Patient height (unit: cm or inch);
■ WEIGHT
Patient weight (unit: kg or lb);

■ BLOOD
Patient blood type:
A, B, O, AB or N (N represents unknown)

NOTE

- If the PAT NO or NAME has not been input, “PATI. INFO. IMCMP” will be displayed in the patient information area.

4. Select OK button, and the patient is admitted.
5. If the monitor is connected with the central monitoring system, you can monitor the patient through the central monitoring system.

Setting Patient Information

To enter information in a field containing no mark, follow this procedure (take PAT NO as an example):
1. Rotate the control knob and highlight the field after PAT NO.
2. Press the control knob, and the cursor jumps to the soft keypad below.
3. Rotate the control knob and move the cursor to the desired letter, number or space, and press the control knob to enter the character. Select DEL button to delete the unwanted entered character.
4. Repeat step 3 until you finish the information entering.
5. Select OK on the soft keypad. The information setting finishes.

To enter information in a field containing the mark ““”, follow this procedure (take SEX as an example):
1. Rotate the control knob and highlight the field after SEX.
2. Press the control knob. A pop-up menu opens.
3. Rotate the control knob and select the desired option.

To set a field containing the mark ““”, follow this procedure (take HEIGHT as an example):
1. Rotate the control knob and highlight the field after HEIGHT.
2. Press the control knob.
3. Rotate the control knob and select the desired height. The height increases or decreases by one as the control knob rotates.
4.2.2 Quick Admit Patient

1. Select QUICK ADMIT PATIENT in PATIENT SETUP menu.
2. Select YES in the pop-up CONFIRM TO CLEAR THE DATA menu.
3. The following menu appears. You can set the PAT TYPE and status of PACE.

![Quick Admit Patient Menu](image)

4. Select OK button, and the patient is admitted.
5. If the monitor is connected with the central monitoring system, you can monitor the patient through the central monitoring system.

4.2.3 Modify Patient

To modify the information of the patient being monitored, please follow this procedure:

1. Select MODIFY PATIENT button in PATIENT SETUP menu.
2. The menu as shown in Figure 4-3 opens.
3. Modify the patient’s information as described above, and select OK button.
4. Prompt information will be displayed on the central monitoring system if the monitor is connected with it.

4.2.4 Clear Patient Data

If a patient is monitored but not admit, before monitoring another patient, the data stored in the patient monitor should be cleared.

1. Click the CLEAR PATIENT DATA button in the PATIENT SETUP menu.
2. Select YES in the pop-up menu.
4.2.5 Discharge Patient
To discharge the patient being monitored, please follow this procedure:
1. Select DISCHARGE PATIENT in PATIENT SETUP menu.
2. Select YES in the pop-up menu.
3. Prompt information will be displayed on the central monitoring system if the monitor is connected with it.

4.3 Configuration Setup
Select CONFIG >> in the SYSTEM MENU. The following menu appears.

<table>
<thead>
<tr>
<th>CONFIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTORY ADU CONFIG</td>
</tr>
<tr>
<td>FACTORY PED CONFIG</td>
</tr>
<tr>
<td>FACTORY NEO CONFIG</td>
</tr>
<tr>
<td>USER ADU CONFIG</td>
</tr>
<tr>
<td>USER PED CONFIG</td>
</tr>
<tr>
<td>USER NEO CONFIG</td>
</tr>
</tbody>
</table>

Back to the upper menu.

EXIT

Figure 4-5 Configuration menu
If you have changed some settings during monitoring a patient and the changed settings are not proper, especially when a new patient is admitted, you can restore the factory configuration. According to the patient category, the monitor provides 3 kinds of factory configurations: factory adult configuration, factory pediatric configuration and factory neonatal configuration.

Restoring Factory Configuration
1. Rotate the control knob and select the desired configuration.
2. Select EXIT, and a CONFIRM CONFIG dialog box pops up.
3. Select YES to restore the monitor to the selected configuration, or select NO to cancel the operation.
4.4 System Setup

Select SYSTEM SETUP>> in SYSTEM MENU. The following menu appears.

<table>
<thead>
<tr>
<th>SYSTEM SETUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACE SELECT >></td>
</tr>
<tr>
<td>ALARM SETUP >></td>
</tr>
<tr>
<td>TIME SETUP >></td>
</tr>
<tr>
<td>RECORD >></td>
</tr>
<tr>
<td>DATA OUTPUT >></td>
</tr>
</tbody>
</table>

Select the standard screen, etc.

Figure 4-6 System Setup

SYSTEM SETUP menu contains the following submenus:

- FACE SELECT>>
- ALARM SETUP>>
- TIME SETUP>>
- RECORD>>
- DATA OUTPUT>>
- ANALOG>>
- MODULE SETUP>>
- TRACE SETUP>>
- MARK EVENT>>
4.4.1 Face Select

Select FACE SELECT>> in SYSTEM SETUP menu. The following menu appears.

![Face Select Menu](image)

In the FACE SELECT menu, options are available as shown above. For detailed information, see chapter *Face Selection*.

4.4.2 Alarm Setup

Select ALARM SETUP>> in SYSTEM SETUP menu. The following menu appears.

![Alarm Setup Menu](image)

Select the module to be set up.

![Alarm Setup Menu](image)
You can perform the following settings in the menu above:

- **ALM SEL**
 Alarm selection
 Options: COMMON ALM SETUP, XX ALM SETUP;
 (XX refers to physiological parameters such as HR, SPO2, etc.).
 If a parameter alarm setup is selected the corresponding
 alarm setup items will be displayed in the ALARM
 SETUP menu

- **ALARM VOL**
 Alarm volume
 The volume can be set between 0 and 10. 0 means off
 and 10 is the maximum volume.
 The volume can not be set to 0 unless the ALARM
 SOUND OFF is set to ENABLE (Refer to 4.7
 Maintenance). When the ALARM VOL is set to 0, it
 will not be saved upon power failure. After the monitor
 restarts, the ALARM VOL restores the default. It will
 also restore its default if you silence or pause alarms.

- **REMINIDER VOL**
 Options: HIGH, MED, LOW.

- **ALM REC TIME**
 Alarm recording time
 Options: 8S, 16S and 32S.
 When an alarm occurs, the recorder records according
 to the alarm recording time.

- **ALM PAUSED TIME**
 Options: 1MIN, 2MIN and 3MIN.
4.4.3 Time Setup

Select TIME SETUP>> in SYSTEM SETUP menu. The following menu appears.

![TIME SETUP Menu](image)

With the control knob, you can change the year, month, day, hour, minute and second as well as select the displayed format of the time. YYYY, MM, and DD refer to year, month and day respectively.

If the monitor is connected with the central monitoring system, the system time of the monitor will be updated in accordance with the central monitoring system, and the TIME SETUP option in SYSTEM SETUP menu will become disabled.
4.4.4 Recorder Setup

Select RECORD>> in SYSTEM SETUP menu. The following menu appears.

![Figure 4-10 Recorder Setup](image)

In this menu, you can adjust the following items:

- **REC WAVE1**
 - Select the first waveform to be recorded. The setting of this item should be different with those of REC WAVE 2 and REC WAVE3; otherwise, the system will adjust the setting automatically. When OFF is selected, the first waveform will not be recorded.

- **REC WAVE2**
 - Select the second waveform to be recorded. The setting of this item should be different with those of REC WAVE1 and REC WAVE3; otherwise, the system will adjust the setting automatically. When OFF is selected, the second waveform will not be recorded.

- **REC WAVE3**
 - Select the third waveform to be recorded. The setting of this item should be different with those of REC WAVE1 and REC WAVE2; otherwise, the system will adjust the setting automatically. When OFF is selected, the third waveform will not be recorded.

NOTE

- If a parameter is not displayed on the screen, this parameter will not be an option of REC WAVE 1, REC WAVE 2 and RECORD WAVE3..
- **RT REC TIME**
 - Real-time recording time
 - Options: CONTINUAL and 8s.

- **TIMING REC TIME**
 - Timing recording time
 - The interval between automatic recordings.
 - Options: OFF, 10MIN, 20MIN, 30MIN, 40MIN, 50MIN, 1HOUR, 2HOURS, 3HOURS and 4HOURS. The monitor will start recording at the selected interval, record for 8s and stop automatically.

NOTE

- TIMING REC TIME cannot be saved after the monitor is turned off. But it can be saved as the user default configuration.
- RT REC TIME has priority over TIMING REC TIME.

- **REC RATE**
 - Recording rate
 - Options: 25.0 and 50.0; unit: mm/s;

- **REC GRID**
 - Recording grid
 - ON: You can select ON to print a grid on the recorder paper;
 - OFF: You can select OFF to print without grid on the recorder paper.

- **CLEAR REC TASK**
 - Clear recording task
 - This key allows you to clear all current recording tasks.
4.4.5 Data Output

Select DATA OUTPUT>> in SYSTEM SETUP menu. The following menu appears.

![Data Output Menu](image)

Output Procedure

1. Disconnect all patient cables connected to the monitor.
2. Verify the monitor is connected to the PC and the PC is running the Patient Information Recall System software.
3. Select from the data source options.
4. Select OUTPUT in the menu and the prompt “CONNECTING…” is shown aside. If you exit the DATA OUTPUT menu at this time, the prompt will be displayed in prompt information area at the lower left corner of the screen.
5. If the connection is available, the data will be output to the PC. For more information, please refer to the help information of the Patient Information Recall System software.

NOTE

- If no data source is selected or the previous data output has not finished, the OUTPUT option in the DATA OUTPUT menu will be inactive.
4.4.6 Analog Output

Select ANALOG >> in SYSTEM SETUP menu. The following menu appears.

![Analog Output Menu](image)

You can perform the following settings in the menu above:

- **ANALOG OUT**
 - Analog output
 - Options: ON and OFF.
 - When ON is selected, analog signals can be output from the auxiliary output port on the rear panel of the monitor.

- **ANALOG WAVE**
 - Options: ECG1, ECG2, IBP1 and IBP2;
 - In the MULTI-LEADS DISPLAY mode, the ECG3, ECG4, ECG5 and ECG6 options are also available.

NOTE

- If DEFIB, SYN or NURSE CALL is selected from the AUX OUTPTU options in the USER MAINTAIN menu, the ANALOG>> option in the SYSTEM SETUP menu will be inactive, and the monitor will be unable to output analog signals. For details, please refer to 4.7 Maintenance.
4.4.7 Module Setup

Select MODULE SETUP in SYSTEM SETUP menu. The following menu appears.

<table>
<thead>
<tr>
<th>MODULE SETUP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG</td>
<td>✔</td>
</tr>
<tr>
<td>RESP</td>
<td>✔</td>
</tr>
<tr>
<td>TEMP</td>
<td>✔</td>
</tr>
<tr>
<td>SPO2</td>
<td>✔</td>
</tr>
<tr>
<td>NIBP</td>
<td>✔</td>
</tr>
<tr>
<td>IBP (1,2)</td>
<td>✔</td>
</tr>
<tr>
<td>CO2</td>
<td>✔</td>
</tr>
<tr>
<td>CO</td>
<td>✔</td>
</tr>
</tbody>
</table>

Figure 4-13 Module Setup

This menu allows you to enable or disable a parameter module to determine the information displayed on the main screen. As shown in the figure above, “✔” indicates an enabled module. A module without the “✔” mark is disabled and the related waveform and parameter data disappear from the display.
4.4.8 Trace Setup

Select TRACE SETUP>> in SYSTEM SETUP menu. The following menu appears.

![Trace Setup Menu](image)

This menu allows you to select the parameter waveform(s) to be displayed. The mark “√” indicates the parameter waveform will be displayed, and that without the mark will not be displayed. The TRACE SETUP menu merely contains the parameter modules enabled in the MODULE SETUP menu. Besides, in the MULTI-LEADS DISPLAY mode or the HALF-SCREEN MULTI-LEADS display mode, the ECG1 waveform and the ECG2 waveform are inactive.

In addition, the WAVE SEQUENCE >> option allows you choose in which sequence the parameter waveforms are displayed from the upper to the lower.

![Wave Sequence Menu](image)
4.4.9 Mark Event

Select MARK EVENT>> in SYSTEM SETUP menu. The following menu appears.

![Figure 4-16 Mark Event](image)

This menu allows you to mark four different events, namely event A, B, C and D. The “@” symbol will appear in the frame of the event being selected. If you attempt to unmark an event, press the control knob again on the marked selection.

The purpose of event marking is to define the records, such as dose taking, injections or therapy, which have influence on patients and parameter monitoring. A mark will be displayed on the trend graph/table indicating the time the mark was initiated in relation to the event it represents.
4.5 Selection Setup

Select SELECTION>> in SYSTEM MENU. The following menu appears.

![Selection Setup Menu](image)

You can perform the following settings in this menu:

- **KEY VOL**
 - Key volume
 - The volume can be set between 0 and 10. 0 indicates the volume is off and 10 indicates the maximum volume.

- **HELP**
 - Online help
 - ON: Indicates the online help is enabled and the help information will be displayed;
 - OFF: Indicates the online help function is disabled and the help information will not be displayed.

- **SCAN TYPE**
 - Scan type
 - REFRESH: The waveform keeps stationary, with real-time refreshing from the left to the right by a moving "erase bar";
 - SCROLL: The waveform moves from the right to the left with time passing by.

- **ALM LIMIT**
 - Alarm limit
 - ON: The alarm limits of parameters are displayed aside the parameter value;
 - OFF: The alarm limits of parameters are not displayed aside.

- **BRIGHTNESS**
 - The brightness can be set between 1 and 10. 1 indicates the lowest brightness and 10 indicates the highest brightness.
4.6 Monitor Version

You can select VERSION>> in the SYSTEM MENU to check the version information as shown below. However, the VERSION menu of your monitor may be different.

![Figure 4-18 Version](image)

You can see the monitor’s configuration by selecting DEVICE CONFIG LIST>> as shown below. However, the DEVICE CONFIG LIST menu of your monitor may be different.

![Figure 4-19 Device Configuration List](image)
You can also see the device version by selecting DEVICE VERSION LIST as shown below. However, the DEVICE VERSION LIST menu of your monitor may be different.

<table>
<thead>
<tr>
<th>Module</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOST BOOT MODULE</td>
<td>2.5</td>
</tr>
<tr>
<td>ECG MODULE</td>
<td>1.3</td>
</tr>
<tr>
<td>NIBP MODULE</td>
<td>2.5</td>
</tr>
<tr>
<td>KEYPAD MODULE</td>
<td>1.4</td>
</tr>
<tr>
<td>SP02 MODULE</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Back to the upper menu.

Figure 4-20 Device Version List
4.7 Maintenance

Select MAINTAIN>> in SYSTEM MENU. The following menu appears.

![Image of Maintain Password]

Figure 4-21 Enter Maintain Password

Enter USER KEY, then select CONFIRM button. The following menu appears.

![Image of User Maintain]

Figure 4-22 User Maintain

Enter max. 12 characters. DEL: delete the current character. OK: confirm the entered information.
You can perform the following settings:

- **MONI NAME** Monitor’s name.
- **DEPT.** The department where the monitor is located.
- **BED NO** The bed number where the monitor is located.
- **NET TYPE** Network type
 Options: CMS and CMS+.
- **LOCAL NET NO** It indicates the bed number of a monitor in the monitoring network. If the NET TYPE is CMS, the LOCAL NET NO can be set between 1 and 64.
- **NOTCH FREQ.** Options: 50Hz and 60Hz;
 If NOTCH is turned ON, the monitor filters the ECG signals with the selected notch frequency.
- **LANGUAGE** Select the required language of the displayed texts.
- **AUX OUTPUT** Three options are available:
 1. **ANALOG OUT** (analog output)
 ✷ If this option is selected, the auxiliary output port will be able to output analog signals, and you can perform the settings in the ANALOG menu. For details, see 4.4.6 Analog Output.
 ✷ If this option is not selected, the analog output function will be disabled and the ANALOG >> option in the SYSTEM SETUP menu will become inactive. In this situation, you cannot set the information in the ANALOG menu.
 2. **NURSE CALL**
 ✷ If this option is selected, the auxiliary output port will be able to output nurse call signals, and you can perform the settings in the NURSE CALL SETUP submenu of the USER MAINTAIN menu. For details, see 4.7.4 Nurse Call Setup.
 ✷ If not selected, the nurse call function will be disabled and the NURSE CALL SETUP>> option in USER MAINTAIN will become inactive. In this situation, you cannot set the information in the NURSE CALL SETUP submenu.
 3. **DEFIB. SYN** (defibrillator synchronization signals)
 ✷ If this option is selected, the auxiliary output port will be able to output defibrillator synchronization signals. In this situation, you can turn on DEFIB SYNC in the ECG SETUP menu to enable the defibrillator synchronization. For details, see 10.4 ECG Setup Menu.
 ✷ If not selected, the defibrillator synchronization function will be disabled and the DEFIB SYNC option in the ECG SETUP menu will set to OFF (it will not be user-adjustable).
LEAD NAMING Options: AHA and EURO;

POWERON CONF It indicates the configuration to be loaded when the monitor is powered on. The options are LAST CONF, USER ADU CONF, USER PED CONF and USER NEO CONF.
LAST CONF is the real-time configuration that is selected before the monitor is last turn off. If the user configuration of a patient type is not saved, the factory configuration of this type will be loaded.
If the time interval between turnoff and turnon is less than 60 seconds, LAST CONF is automatically restored when the monitor is restarted. If this time interval is greater than 120 seconds, the setting of POWERON CONF will be loaded when the monitor is restarted.

SAVE AS USER CONFIG You can change the monitor’s settings and save the changed settings as user configuration of this patient type so that you can load the user configuration when a new patient is admitted.
You can restore the saved user configuration in the CONFIG menu or set it as POWERON CONF.

NOTE

- If you changed the net type and language, the settings take effect only after you restart the monitor.
- The setting of the notch frequency can neither be saved as the user configuration nor changed when the factory configuration is selected. Once set by a user, no operation except for manual adjustment can change it. The setting keeps the same even when the monitor is restarted.
- Do not change the BED NO when your monitor is using the wireless network feature.
4.7.1 Alarm Setup

Select ALARM SETUP>> to enter the following menu:

<table>
<thead>
<tr>
<th>ALARM SETUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARM SOUND OFF</td>
</tr>
<tr>
<td>AUDIO MODE</td>
</tr>
<tr>
<td>PARA ALM TYPE</td>
</tr>
<tr>
<td>REMINDE TONE</td>
</tr>
<tr>
<td>REMINDE INTERVAL</td>
</tr>
<tr>
<td>ECG LEAD OFF</td>
</tr>
<tr>
<td>SP02 SENSOR OFF</td>
</tr>
</tbody>
</table>

Enable/disable the ALARM SOUND OFF setting.

Figure 4-23 Alarm Setup

- **ALARM SOUND OFF**
 - ENABLE: ALARM VOL can be set to 0.
 - DISABLE: ALARM VOL cannot be set to 0.
- **AUDIO OFF**
 - MODE 1: the alarm sound interval of high level alarm is 8s and that of medium level alarm is 24s.
 - MODE 2: the alarm sound interval of high level alarm is 3s and that of medium level alarm is 14s.
- **PARA ALM TYPE**
 - LATCH, UNLATCH
- **REMINDE TONE**
 - Options: ON, OFF.
- **REMINDE INTERVAL**
 - Options: 1MIN, 2MIN and 3MIN.
- **ECG LEAD OFF**
 - Alarm level: HIGH, MED, LOW.
- **SpO2 SENSOR OFF**
 - Alarm level: HIGH, MED, LOW.

WARNING

- Select the setting of ALARM SOUND OFF with caution.

NOTE

- In the case that alarm volume is set to 0, if you set ALARM SOUND OFF to DISABLE, alarm volume change to the default.
4.7.2 IP Address Setup

When the monitor is connected with the central monitoring system, and the NET TYPE is CMS+, you need to set the IP address of your monitor. Select IP ADDRESS SETUP in USER MAINTAIN menu. The following menu appears. For details, please contact with the technician responsible for the central monitoring system in your hospital.

![Figure 4-24 IP Address Setup](image)

4.7.3 Self Definition of Color

Select COLOR SELF-DEFINE >> in USER MAINTAIN menu. The following menu appears.

![Figure 4-25 Self-definition of color](image)

This menu allows you to choose in which color the waveform(s) and parameter(s) of a parameter module are to be displayed.

- OTHER PARA refers to the parameters, NIBP and TEMP, which do not have waveform.
- CO2 refers to the parameters measured by CO2 module.
4.7.4 Nurse Call Setup

Select NURSE CALL SETUP >> in USER MAINTAIN menu. The following menu appears.

![Figure 4-26 Nurse Call Setup]

You can perform the following settings:

- **SIGNAL DURATION**

Two options are available: PULSE, and CONTINUUM.

1. **PULSE**

 When pulse is selected, a nurse call signal is a pulse signal lasting 1s. When multiple alarms occur simultaneously, only one pulse signal will be output. If an alarm comes out before the previous alarm is cleared, another pulse signal will be output.

2. **CONTINUUM**

 When continuum is selected, the duration of a nurse call signal is the same with the alarm, namely, from the time that the alarm occurs to the time it disappears.

- **SIGNAL TYPE**

1. **NORMAL OPEN**: Select this option when the hospital’s call system is set to NORMAL OPEN.

2. **NORMAL CLOSE**: Select this option when the hospital’s call system is set to NORMAL CLOSE.
ALM LEV

Alarm level
Options: HIGH, MED (medium) and LOW.
More than one option can be selected at one time.

ALM TYPE

Alarm type
Options: TECH. (technical) and PHYS. (physiological).
Both options can be selected at one time.

Trigger Conditions

A nurse call signal will be triggered only if all the following conditions are met:

1. The nurse call function is enabled.
2. An alarm of the preset alarm level and alarm type comes out.
3. The monitor is not in the Alarms Paused or the System Silenced status.

NOTE

- If no option in ALM LEV or ALM TYPE is selected, the nurse call signal will not be triggered in whatever condition.
- The nurse call function can’t be used as the main alarm notice method. Medical staff must combine the audible and visual alarms, the clinical vital signs of the patient to determine the patient’s situation.
- In the Alarms Paused or the System Silenced status, the nurse call function of the monitor will be disabled automatically.

4.7.5 CO₂ User Maintain

Selecting CO₂ USER MAINTAIN >> in USER MAINTAIN menu opens the CO₂ USER MAINTAIN menu. The options contained in this menu are relative with the CO₂ module that you monitor is equipped with. For details, please refer to chapter *NIBP Monitoring*.

4.7.6 IBP Pressure Calibration

The monitor provides the function of IBP pressure calibration.
4.7.7 Monitor Status

Select STATUS >> in ENTER MAINTAIN PASSWORD menu. The following menu appears.

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. STARTUP TIME</td>
<td>06-08-2007</td>
<td>13:41:25</td>
</tr>
<tr>
<td>2. IBP(1,2) INIT ERR</td>
<td>06-08-2007</td>
<td>13:41:25</td>
</tr>
<tr>
<td>3. IBP(1,2) SELFTEST ERROR</td>
<td>06-08-2007</td>
<td>13:41:25</td>
</tr>
<tr>
<td>4. CO INIT ERR</td>
<td>06-08-2007</td>
<td>13:41:25</td>
</tr>
<tr>
<td>5. CO SELFTEST ERROR</td>
<td>06-08-2007</td>
<td>13:41:25</td>
</tr>
<tr>
<td>6. CO2 SELFTEST ERROR</td>
<td>06-08-2007</td>
<td>13:41:25</td>
</tr>
<tr>
<td>7. IBP(1,2) COMM ERROR</td>
<td>06-08-2007</td>
<td>13:41:26</td>
</tr>
<tr>
<td>8. CO2 COMM ERROR</td>
<td>06-08-2007</td>
<td>13:41:26</td>
</tr>
<tr>
<td>9. CO COMM ERROR</td>
<td>06-08-2007</td>
<td>13:41:26</td>
</tr>
<tr>
<td>10. REC SELFTEST ERROR</td>
<td>06-08-2007</td>
<td>13:41:41</td>
</tr>
</tbody>
</table>

Figure 4-27 Monitor Status

- **UP-DOWN**

 This menu can display a maximum of ten status messages. In case of more than ten, you can select UP-DOWN to learn other status messages.

- **REC**

 Recording

 You can select the REC option to record the status message displayed.
4.8 DEMO Function

Select DEMO >> in SYSTEM MENU. The following menu appears.

```
INPUT DEMO KEY

KEY: 2080

EXIT
```

Figure 4-28 Input Demo Key

The monitor enters the demonstration mode when the correct password is input in the menu above. The word DEMO will be displayed on the main screen. The purpose of the demonstration display is to demonstrate the performance of the monitor, and for training purposes.

WARNING

- In clinical applications, this function is forbidden because the DEMO display can mislead the medical staff to treat the DEMO waveforms and parameters as the actual data of the patient. This may result in serious injury to the patient, or a delay of treatment or improper treatment.
FORYOURNOTES
5 Face Selection

5.1 Standard Screen

You can open the FACE SELECT menu by selecting FACE SELECT >> in SYSTEM SETUP menu.

![Figure 5-1 Face Select](image1)

The standard screen is the default screen. If the current screen is not the standard screen, you may enter the standard screen by selecting STANDARD SCREEN and then selecting EXIT in FACE SELECT menu. For more information about the standard screen, see 2.4 Display.

![Figure 5-2 Standard Screen](image2)
5.2 Trend Screen

To enter the following screen, select TREND SCREEN in FACE SELECT menu and then select EXIT.

Trend graph

Trend graphs locate to the right of the corresponding waveform in the waveform area, and display the trends of one parameter of each module. The parameter labels, as well as their scales, are displayed to the left of the trend graph.

Trend length

The dynamic trend length, located below the trend graph, is 2 hours. On the trend graph, the scale of the right end of the X-axis is 0 hour while the left end is -2 hour.

Selecting a trend parameter

If a module has multiple trend parameters, you can select one from the parameter label options of the corresponding trend graph. The trend graph of the selected parameter will be displayed.
5.3 OxyCRG Screen

To enter the following screen, select oxyCRG SCREEN in FACE SELECT menu and then select EXIT.

Oxy CRG screen is located at the lower part of the waveform area, consisting of the HR trend, the SpO2 trend, and the RR (respiration rate) trend or the compressed respiration waveform. Below the RR trend or the compressed respiration waveform is the scale of the trend time. In addition, three labels are displayed beneath the time scale (see 1, 2 and 3 in the figure above). The labels are detailed as below.

1. Trend length
 This label allows you to select the time duration of the trend graphs displayed. You can select either 1 minute, 2 minutes or 4 minutes.

2. Compressed respiration waveform/RR trend
 With this label, you can select to display the compressed respiration waveform or the RR trend beneath the SpO2 trend.

3. Recording
 You can select the REC label to print out the the trends or the waveform displayed in the oxyCRG screen using the recorder.

Figure 5-4 OxyCRG Screen

Oxy CRG screen is located at the lower part of the waveform area, consisting of the HR trend, the SpO2 trend, and the RR (respiration rate) trend or the compressed respiration waveform. Below the RR trend or the compressed respiration waveform is the scale of the trend time. In addition, three labels are displayed beneath the time scale (see 1, 2 and 3 in the figure above). The labels are detailed as below.

1. Trend length
 This label allows you to select the time duration of the trend graphs displayed. You can select either 1 minute, 2 minutes or 4 minutes.

2. Compressed respiration waveform/RR trend
 With this label, you can select to display the compressed respiration waveform or the RR trend beneath the SpO2 trend.

3. Recording
 You can select the REC label to print out the the trends or the waveform displayed in the oxyCRG screen using the recorder.
5.4 Viewbed Screen

This monitor can view one parameter waveform and measured data from another patient monitor (viewbed monitor) on the same monitoring network. To enter the following screen, open FACE SELECT menu, select VIEWBED SCREEN, and then select EXIT. When connecting by wireless network (if your monitor has this feature), viewbed function is disabled.

Figure 5-5 Viewbed Screen

The monitor you are viewing from is called “host monitor”. The monitor being viewed is called “viewbed monitor”. The viewbed screen is always displayed at the lower part of the host monitor’s waveform area. As shown in Figure 5-5, it consists of the following parts.
1. Viewbed monitor label
 The viewbed monitor label allows you to select the viewbed monitor you want to view. It
 displays the bed number and patient name of the viewbed monitor. If they are not entered,
 the label displays blank. If the host monitor is not connected with any other monitor on the
 same network, the label displays N/A.

2. Viewbed waveform label
 The viewbed waveform label allows you to select a waveform of the viewbed monitor. If the
 viewbed monitor does not display any waveform, this label displays N/A.

3. Viewbed alarm indicator
 The viewbed alarm indicator in the viewbed screen is used to indicate the alarm status of the
 viewbed monitor. Its color is identical with that of the viewbed monitor.

4. Viewbed parameter area
 All parameter data of the viewbed monitor is displayed in this area.

5. Viewbed waveform area
 The viewbed waveform area is located beneath the viewbed waveform label. It displays the
 waveform selected through the viewbed waveform label. The scan type (either refresh or
 scroll) and the sweep speed of the viewbed waveform follow the host monitor. Besides,
 information relating to the viewbed waveform is shown above the waveform.

6. Technical information area
 On the right of the viewbed monitor label is the technical information area. It shows the
 technical information about viewing of other patient, such as the prompt information
 indicating failure in viewing other patient due to network problems.

Automatic Selection

When the viewbed screen is opened, the host monitor automatically selects a viewbed monitor on
the same network and a waveform of this monitor to view. In case the monitor being viewed is
disconnected, the host monitor automatically closes the display of alarms, parameters and the
waveform of the viewbed monitor. However, the host monitor will not automatically select to
view other monitor. You must make the selection using the viewbed monitor label manually.

If a parameter module of the viewbed patient monitor is turned off or disassembled, the
对应的 waveform displayed on the host monitor disappears, and the viewbed waveform
area becomes blank. At this time, you can use the viewbed waveform label to view other
waveform.
5.5 Large Font Screen

To enter the following screen, open FACE SELECT menu, select LARGE FONT SCREEN, and then select EXIT.

As shown above, the HR, SpO₂ and NIBP values (diastolic pressure, mean pressure and systolic pressure) are displayed in large font. The ECG and SpO₂ waveforms are displayed on the upper left of the screen. In case the ECG, SpO₂ or NIBP parameter module is turned off, the corresponding parameters and waveform disappear. If all the three modules are closed, no waveform or parameter is displayed on the screen.

NOTE

- When you open a menu in the large font screen mode, the monitor will enter the standard screen automatically. When you exit the menu, the monitor will return to the large font screen.
- If MULTI-LEADS DISPLAY is selected in the ECG SETUP menu, the monitor cannot enter the large font screen.
5.6 Standby Mode

During patient transport or temporary departure of a patient, the monitor can be set to STANDBY mode. In this mode, the monitor suspends the monitoring and measurement on the patient and shields all alarm indications. Besides the WORK MODE of CO₂ module (if available), which will also be changed to STANDBY, the previous menu settings and patient information keep unchanged.

Entering the STANDBY mode

1. Disconnect all leads and sensors between the patient and the monitor.
2. Select the STANDBY label at the lower right corner of the main screen. A dialog box pops up, and you can choose to enter the standby mode or not.
3. Select YES, and the monitor will enter the standby mode as shown below.
4. Select NO, and the monitor will return to the previous screen.

![Figure 5-7 Standby Mode](image)

Exiting the STANDBY mode

Press any key other than the power switch on the control panel or turn the control knob in the STANDBY mode, and a dialog box will pop up. Select YES in the dialog box, and you will exit the STANDBY mode and return to the previous screen.
FOR YOUR NOTES
6 Alarms

6.1 Overview

The monitor gives audible or visual alarms to indicate the medical staff, when a vital sign of the patient appears abnormal, or mechanical or electrical problems occur to the monitor.

Upon turning on the monitor, the alarm indicator will flash once in yellow and red. Then, a beep will be heard. This is used to verify the audible and visual alarm function of the monitor. If no beep is heard, or the alarm indicator doesn’t flash normally, please do not use the monitor, and contact our customer service.

For details about alarm setup of this monitor, please refer to 4.4.2 Alarm Setup.

6.1.1 Alarm Categories

The alarms are divided into three categories: physiological alarms, technical alarms and prompt information.

1. Physiological alarms

 A physiological alarm either indicates that a monitored physiological parameter is out of specified limits or indicates an abnormal patient condition. For example: HR TOO LOW, ECG LOST or RESP ARTIFACT, etc. Physiological alarm messages are displayed in the physiological alarms area of the main screen.

2. Technical alarms

 Technical alarms are also referred to as system error messages. A technical alarm indicates that the monitor or parts of the monitor is not capable of accurately monitoring the patient’s condition due to improper operation or system failure. For example: ECG INIT ERR or TEMP SELFTEST ERROR, etc. Technical alarm messages are usually displayed in the technical alarms area of the main screen. But the technical alarms related to NIBP are displayed in the lower part of the NIBP parameter window.

3. Prompt information

 Strictly speaking, prompt information cannot be counted in alarms. It is usually information relating to the system, but not concerning vital signs of patients. For example, the monitor prompts “NIBP alarm disabled!” at the time the monitor is powered on. Besides, if a parameter module is turned on but the required leads or sensor are not connected, the monitor will prompt accordingly, such as “ECG LEAD OFF” or “SPO2 SENSOR OFF”, etc. Prompt information is usually displayed in the technical alarms area. But the prompt information relating to NIBP is displayed in the lower part of the NIBP parameter window.
6.1.2 Alarm Levels

The alarms are divided into three priority levels: high level alarms, medium level alarms and low level alarms.

1. High level alarms
 - The patient’s life is in danger and requires emergency treatment, or
 - Serious technical problem occurs to the monitor, such as error in ECG module initialization.

2. Medium level alarms
 - Vital signs of the patient become abnormal, and patient requires immediate treatment, or
 - Certain technical problem occurs to the monitor, such as error in temperature calibration.

3. Low level alarms
 - Certain technical alarm occurs to the monitor, such as ECG lead off in measurement.

The levels of all technical alarms and some physiological alarms are not user-adjustable, because they have been fixed when the monitor is produced. However, you can change the levels of some physiological alarms in the corresponding parameter setup menus.

All physiological alarms, technical alarms and prompt information are given in chapter *Alarm Messages and Prompt Information*.

6.2 Alarm Modes

When an alarm occurs, the monitor raises the user’s attention by the following audible or visual indications.

- Visual alarms
- Audible alarms
- Alarm messages
- Parameter flashes
- Reminder Tones

Besides, the visual alarms, audible alarms and alarm messages are given in different ways to identify different alarm levels.
6.2.1 Visual Alarms

The alarm indicator on the front panel of the monitor varies its flash color and frequency to indicate different alarm levels.

- High level alarm: red and quick flash;
- Medium level alarm: yellow and slow flash;
- Low level alarm: yellow light without flash.

6.2.2 Audible alarms

The monitor uses different alarm tones to indicate different alarm levels.

- High level alarm: “DO-DO-DO--DO-DO---DO-DO--DO-DO”.
- Medium level alarm: “DO-DO-DO”.
- Low level alarm: “DO”.

Different intervals correspond to different alarm levels: High level alarm phonates once every 3 or 8 seconds. Medium level alarm phonates once every 14 or 24 seconds. Low level alarm phonates once every 24 seconds. For details, please refer to 4.7 Maintenance.

NOTE

- When multiple alarms of different levels occur simultaneously, the monitor selects the alarm of the highest level and gives alarm tone accordingly.

6.2.3 Alarm Messages

Alarm messages are given when alarms occur. The alarm messages are displayed in the physiological alarms area or the technical alarms area in black. For physiological alarms, asterisks are displayed before the alarm messages to identify the alarm level.

- High level alarms: triple asterisks “***”
- Medium level alarms: dual asterisks “**”
- Low level alarms: single asterisk “*”

The monitor varies the background color of the technical and physiological alarm messages to indicate the alarm level.

- High level alarms: red background color
- Medium level alarms: yellow background color
- Low level alarms: yellow background color
NOTE

- Comparing with an alarm message, the background color of prompt information is the same as that of the position where it appears.
- The NIBP technical alarm messages appear in the NIBP parameter window. For high level alarms, the text color is red; for medium and low level alarms, the text color is yellow. The background color is the same as the parameter window.

6.2.4 Parameter Flashes
An alarm is triggered when a patient parameter exceeds the parameter limit. At the same time, the measured parameter value in the parameter window flashes every second. If the ALM LIMIT in the SELECTION menu is turned ON, the exceeded upper or lower alarm limit also flashes every second.

6.2.5 Reminder Tones
When system sounds are silenced or alarm tones are turned off, the patient monitor will give a single beep in case of an active alarm condition. You can set the REMINDER VOL to HIGH, MED or LOW. For details, please refer to 4.4.2. Alarm Setup. The REMINDER TONE can be turned on or off, and you can set REMINDER INTERVAL as required. For details, please refer to 4.7.1 Alarm Setup.

6.3 Alarm Statuses
When an alarm occurs, normally the monitor gives indications in the modes mentioned above as per the alarm level. If necessary, you can set the monitor to the following alarm statuses.

- Alarms Disabled
- Alarms Paused
- System Silenced
- Alarm Sound Off
6.3.1 Alarms Disabled

If the alarm switch of a parameter is turned off, the monitor does not generate alarms even if the measured parameter value exceeds the alarm limit. This status is called Alarms Disabled.

To disable the alarms of a parameter, you should open the setup menu of the parameter. Take heart rate (HR) as an example.

1. Rotate the control knob and highlight the ECG parameter label.
2. Press the control knob. The ECG SETUP menu pops up.
3. Rotate the control knob and highlight the field on the right of HR ALM.
4. Press the control knob, and then select OFF from the pull-down list.
5. The HR alarms are disabled. The icon will be displayed on the right of the ECG parameter label.

NOTE

- When a new parameter module is installed or when a parameter module is turned ON, all the parameter alarms and technical alarms related to this module are disabled in the first 30-second operating time. The other module alarms are not influenced.

6.3.2 Alarms Paused

To pause all alarms of the monitor for 1, 2 or 3 minutes, press the SILENCE key on the control panel once (for less than 2 seconds). In Alarms Paused status,

- Visual alarms and audible alarms are both paused.
- The parameters generating physiological alarms and their upper or lower limits stop flashing.
- Alarm messages are not displayed.
- The physiological alarms area shows the rest time of alarms paused status.
- The icon will be displayed in the sound icon area.

The monitor will not terminate the Alarm Paused status even if a new technical or physiological alarm occurs during the alarms paused time.
6.3.3 System Silenced

To silence the system, press the SILENCE key for no less than 2 seconds. In the System Silenced status, all system sounds are shielded and the icon is displayed in the sound icon area. However, other modes of alarms (excluding audible alarms) are given as normal. If a new alarm occurs, the System Silenced status will be terminated.

The system sounds include the audible alarms, key tones, heart beat tones and pulse tones. Among them, key tones refer to the sounds produced when the control knob is rotated and pressed.

6.3.4 Alarm Sound Off

In Alarm Sound Off status, all audible alarms are suppressed, but other modes of alarms and other sounds are not influenced. The icon will be displayed in the sound icon area. To turn off the audible alarms, first access the USER MAINTAIN menu, and then set the ALARM SOUND OFF to DISABLE. For details, please refer to 4.7 Maintenance.

6.3.5 Status Switchover

1. In the Normal status,
 - Press the SILENCE key for less than 2 seconds to switch to the Alarms Paused status, or
 - Press the SILENCE key for 2 seconds or more to switch to the System Silenced status.

2. In the Alarms Paused status,
 - Press the SILENCE key for less than 2 seconds to switch to the Normal status, or
 - Press the SILENCE key for 2 seconds or more to switch to the System Silenced status.

3. In the System Silenced status,
 - Press the SILENCE key for less than 2 seconds to switch to the Alarms Paused status, or
 - Press the SILENCE key for 2 seconds or more to switch to the Normal status.

4. In the Alarm Sound Off status,
 - Enter the ALARM SETUP menu and set ALARM VOL to any setting other than 0. The alarm sound is restored.
 - Enter the USER MAINTAIN menu and set ALARM SOUND OFF to DISABLE. The system restores the default alarm volume.
6.4 Latching Alarms
As described in 4.7 Maintenance, the parameter alarm type can be set to either LATCH or UNLATCH.

If the parameter alarm type is set to LATCH, before or during the occurrence of a parameter alarm, the alarm message will be latched even if the initial alarm condition has ceased. The alarm message continues to be displayed, but the alarming modes change as follows:
- The measured parameter value and the upper or lower parameter limit stop flashing.
- The generated time of the alarm is displayed behind the alarm message in the physiological alarms area.

If the parameter alarm type is set to UNLATCH, the monitor stops giving any indication for this alarm when the initial alarm condition has ceased.

6.5 Clearing Alarms
Generally the alarm indications of an alarm will automatically be cleared when the alarm condition that triggered the alarm ceases. However, you can also clear the alarm indications or the latched alarms by the following ways.

1. Clearing audible and visual alarm indications
For some technical alarms, the audible and visual alarm indications will be cleared if the monitor is set to the Alarms Paused status (by pressing the SILENCE key for less than 2 seconds), and the alarm message will be changed to prompt information during and after the alarms paused time. If the technical alarm is triggered again after the monitor restores to the normal status, the monitor will give alarming indications as normal.

Please refer to chapter Alarm Messages and Prompt Information to see for which technical alarms that the audible and visual indications can be cleared.

2. Clearing all alarm indications
For some technical alarms, if the monitor is set to the Alarms Paused status (by pressing the SILENCE key for less than 2 seconds), all alarm indications will be cleared during and after the alarms paused time. If the technical alarm is triggered again after the monitor restores to the normal status, the monitor gives alarming indications as normal.

Please refer to chapter Alarm Messages and Prompt Information to see for which technical alarms that all alarm indications can be cleared.

3. Clearing latched alarms
Clearing latched alarms is also referred to as resetting alarms. It refers to clear the latched alarms by setting the monitor to the Alarms Paused status (by pressing the SILENCE key for less than 2 seconds).
6.6 Testing Alarms

When the monitor starts up, a selftest will be performed automatically. The alarm indicator will flash once in yellow and red. Then, the system gives a beep indicating that the visible and audible alarm indicators are functioning correctly. The start-up screen is displayed.

For further testing of individual measurement alarms, perform the measurement on yourself (for example SpO2 or CO2) or use a simulator. Adjust alarm limits and check if alarms behave correctly.

6.7 When an Alarm Occurs

⚠️ WARNING

- When an alarm occurs, always check the patient’s condition first.

When an alarm occurs to the monitor, refer to the following steps and take action properly.

1. Check the patient’s condition.
2. Identify the alarming parameter and the alarm category.
3. Identify the cause of the alarm.
4. Take action to remedy the alarm cause.
5. Check if the alarm is cleared.

For details about how to deal with specific alarms, see chapter *Alarm Messages and Prompt Information*.
7 Freezing Waveforms

7.1 Overview

You can freeze the monitored waveforms of a patient as desired and view the waveforms of 40 seconds to gain a clear observation. Besides, the monitor can print three frozen waveforms using the recorder.

The freezing function of the monitor has the following features.

- When the monitor enters the frozen mode, it exits all other menus automatically.
- The system freezes all waveforms displayed in the waveforms area.
- The frozen waveforms can be reviewed and recorded.

7.2 Freezing and Unfreezing

Entering the Frozen Mode

1. Press the FREEZE key on the control panel when the monitor is not in frozen mode.
2. The system exits all displayed menus (if displayed), and the FROZEN menu pops up.
3. All displayed waveforms are frozen. In other words, the waveforms stop being refreshed or scrolling.

Exiting the Frozen Mode

To exit the frozen mode,

- Select EXIT in the FROZEN menu, or
- Press the FREEZE key on the control panel again.

After exiting the frozen mode, all waveforms on the screen are cleared and new real-time waveforms are displayed. If the scan type of the monitor is set to REFRESH, the waveforms are refreshed from the left of the waveforms area to the right; if the scan type is set to SCROLL, the waveforms are displayed from the right of the waveforms area to the left and are scrolling.
7.3 FROZEN Menu

The FROZEN menu is displayed at the lower left corner. You can perform the following settings in this menu.

- **WAVE 1**
 Waveform 1
 It determines the first frozen waveform to be printed on the recorder paper. The options of waveform 1 include all waveforms displayed on the screen and OFF. The waveform 1 will not be recorded when OFF is selected.

- **WAVE 2**
 Waveform 2
 It determines the second frozen waveform to be printed on the recorder paper. The options of waveform 2 include all waveforms displayed on the screen and OFF. The waveform 2 will not be recorded when OFF is selected.

- **WAVE 3**
 Waveform 3
 It determines the third frozen waveform to be printed on the recorder paper. The options of waveform 3 include all waveforms displayed on the screen and OFF. The waveform 3 will not be recorded when OFF is selected.

- **RECALL**
 Waveform recall
 It changes to L-RIGHT when selected. At this time, you can rotate the control knob to view the frozen waveform.

- **REC**
 Record
 When selected, the recorder starts printing out the selected waveform 1, waveform 2 and waveform 3.

- **EXIT**
 This option allows you to exit the FROZEN menu and unfreeze the waveforms.
7.4 Waveform Recall

1. In the frozen mode, select the RECALL option in the FROZEN menu, and the option name changes to L-RIGHT.

2. Rotate the control knob clockwise, and the frozen waveforms move to the right. At the lower right corner of the first waveform is an arrow pointing upward. The time is indicated below the arrow. The indication "0S" is used to mark the moment when the waveforms were frozen.

3. With the waveforms move to the right, the time mark, in turn, changes to -1S, -2S, -3S…

4. The time mark is applied to all waveforms displayed on the screen.

5. Rotate the control knob anticlockwise, and the waveforms move to the left.

7.5 Recording Frozen Waveforms

1. Select WAVE 1, WAVE 2 and WAVE 3.

2. Select the REC option, and the recorder prints out the selected frozen waveforms and the parameters measured at the moment when the waveforms were frozen.

3. If you set one or two waveforms to OFF, only the waveforms set to ON and corresponding parameter values measured at the moment when the waveforms were frozen will be printed out.

4. If WAVE 1, WAVE 2 and WAVE 3 are all set to OFF, the recorder will not print out any waveform and will merely print out the parameters measured at the moment when the waveforms were frozen.

5. The recording time length is identical to that of the waveforms displayed on the screen. If a waveform is of faster sweep speed, its recording time is shorter.

6. During waveform recording, the monitor is still in frozen mode.

7. When the recording completes, you can select to record other waveforms.

8. If the recorder is not installed, selecting the REC option or pressing the RECORD key triggers the "Recorder does not exit" message, which is displayed in the prompt information area.
8 Recording

8.1 Overview

1. Start/Stop key: this key has no function for this monitor.
2. Indicator
 - On: when the recorder works correctly.
 - Off: when the monitor is switched off.
 - Flashes: if an error occurred to the recorder, e.g., the recorder runs out of paper.
3. Paper outlet
4. Recorder door
5. Latch

A thermal recorder can be equipped with the monitor. The performance of the recorder is described as below.

- Records patient information and parameters.
- Records a maximum of three waveforms.
- The optional recording rates: 25mm/s and 50mm/s.
- The recording grid is optional.
- Multiple recording types are supported.

For details about the recorder setup, please refer to 4.4.4 Recorder Setup.
8.2 Recording Types

The monitor supports the following types of recordings:

- Real-time recording: continuous real-time recording or 8-second real-time recording.
- Automatic recording.
- Alarm recording: measured parameter alarm recording.
- Frozen waveform recording.
- Trend graph/table recording: trend graph, trend table, NIBP measurement, alarm event or arrhythmia recording.
- Titration table recording.
- OxyCRG recording.
- Monitor status information recording.

Real-time recording

Pressing the RECORD key on the control panel, the real-time recording starts and the current parameters and waveforms are recorded. As described in 4.4.4 Recorder Setup, you can set the RT REC TIME to 8S or CONTINUUM in the RECORD menu. You can also select the three waveforms (REC WAVE 1, REC WAVE 2 and REC WAVE 3) to be recorded. If one or two of the three waveforms is set to OFF, the recorder will merely print out the waveforms set to ON and all the measured parameters; if all the three waveforms are set to OFF, the recorder will only print all the measured parameters.

Automatic recording

The monitor starts recording at the selected interval (TIMING REC TIME) and record for 8s waveforms automatically. For details, see 4.4.4 Recorder Setup.

Alarm recording

Alarm recording is measured parameter recording. When a parameter alarm occurs, the recorder automatically records two waveforms of 8, 16 or 32 seconds (respectively 4, 8 or 16 seconds before and after the alarm. See 4.4.2 Alarm Setup) and some measured parameters.
NOTE

- For a parameter alarm recording, you must first set the ALM and ALM REC options to ON.

Frozen waveform recording

In the frozen mode, the monitor can print the frozen waveforms displayed on the screen and the parameters measured at the moment when the waveforms were frozen. For details, see 7.5 Recording Frozen Waveforms.

Trend graph/table recording

When the trend graph/trend table or a recall window is opened, you can select the REC option to print out the trend graph, trend table, NIBP measurement, alarm event or arrhythmia event.

OxyCRG recording

In the oxyCRG screen, you can press the RECORD key on the control panel to print the three trend graphs or waveforms from the recorder.

Monitor status information recording

The REC option in the STATUS menu allows you to print the status information of the monitor.
8.3 Recorder Operations

Continuous real-time recording
1. Press the RECORD key to start recording.
2. Press the RECORD key again to stop the recording.

8-second real-time recording
1. Press the RECORD key to start recording.
2. The recording stops automatically in 8 seconds.

Automatic recording
1. The recorder starts recording automatically at the preset interval (RT REC TIME).
2. The recording stops automatically in 8 seconds.

Alarm recording
1. When an alarm occurs, the recorder starts recording automatically.
2. The recording stops automatically when the preset alarm recording time (ALM REC TIME) is over.

Frozen waveform recording
1. Press the FREEZE key to open the FROZEN menu.
2. Select WAVE 1, WAVE 2 and WAVE 3.
3. Select the REC option to record.
4. When the recording completes, the recorder stops automatically.

Trend graph recording
1. Select TREND GRAPH>> in SYSTEM MENU to open the TREND GRAPH window.
2. Select the REC option to start recording.
3. When the recording completes, the recorder stops automatically.

Trend table recording

1. Select TREND TABLE>> in SYSTEM MENU to open the TREND TABLE window.
2. Select the REC option to start recording.
3. When the recording completes, the recorder stops automatically.

NIBP measurement recording

1. Select NIBP RECALL>> in SYSTEM MENU to open the NIBP RECALL window.
2. Select the REC option to start recording.
3. When the recording completes, the recorder stops automatically.

Alarm event recording

1. Select ALARM RECALL>> in SYSTEM MENU to open the ALARM RECALL window.
2. Select the alarm recall time in the START and END fields.
3. Select the ALARM RECALL>> option and open the ALARM RECALL window.
4. Select the REC option to start recording.
5. When the recording completes, the recorder stops automatically.

OxyCRG recording

1. Enter the OxyCRG screen.
2. Select the RECORD key when the OxyCRG screen is displayed, and the recorder starts recording.
3. When the recording completes, the recorder stops automatically.

Monitor status information recording

1. Select MAINTAIN >> in SYSTEM MENU, and a popup menu is opened.
2. Select STATUS >> in the popup menu.
3. Select the REC option in the STATUS menu to start recording.
4. When the recording completes, the recorder stops automatically.
8.4 Loading Paper

1. Use the latch at the upper right of the recorder door to pull the door open.
2. Insert a new roll into the compartment as shown below.
3. Close the recorder door.
4. Check if paper is loaded correctly and the paper end is feeding from the top.

⚠️ CAUTION

- Use only specified thermal paper. Otherwise, it may cause damage to the recorder’s printhead, the recorder may be unable to print, or poor print quality may result.
- Never pull the recorder paper with force when a recording is in process. Otherwise, it may cause damage to the recorder.
- Do not leave the recorder door open unless you reload paper or remove troubles.

Removing Paper Jam

If the recorder works incorrectly or produces unusual sounds, check if there is a paper jam first. If a paper jam is detected, follow this procedure to remove it:

1. Open the recorder door.
2. Take out the paper and tear off the draped part.
3. Reload the paper and close the recorder door.
9 Recall

9.1 Overview
The monitor is able to store important patient data so that the user can review and record the data as desired.

- Trend Graph Recall
 You can review the latest 1-hour trend graph of a measured parameter displayed every 1 or 5 seconds, or the latest 96-hour trend graph displayed every 1, 5 or 10 minutes.

- Trend Table Recall
 You can review the latest 96-hour trend table data of a measured parameter.

- NIBP Recall
 You can review 800 NIBP measurement results, each of which includes a systolic pressure, a mean pressure, a diastolic pressure, a pulse rate and a measurement time.

- Alarm Event Recall
 You can review the latest 70 parameter alarm events, as well as the 8, 16, or 32-second waveforms stored at the time of the alarm.

NOTE

- When your monitor is powered off or the power is interrupted accidentally, all the stored data is lost, if the monitor is not equipped with the function of “Power-off Data Storage”.

9.2 Trend Graph Recall

Select TREND GRAPH >> in SYSTEM MENU. The following window appears.

Figure 9-1 Trend Graph

As shown above, PARA1, PARA2 and PARA3 allow you to select a parameter from the options. The trend graph of the selected parameter is displayed. If NIBP is selected, no trend graph is to be displayed. Instead, the ▲ mark indicates the systolic pressure, the ▼ mark indicates the diastolic pressure and the * mark indicates the mean pressure. The x-axis shows the time scale while the y-axis shows the value scale of a parameter. The trend cursor ■ is used to identify a specific time in the whole trend time, and it is displayed below the title “TREND GRAPH”. All the parameter values measured at the time of the cursor are displayed in the parameters area.

- PARA SELECT (Parameter Selection)
 1. Rotate the control knob and highlight the field at the right side of PARA1, PARA2 or PARA3.
 2. Press the control knob, and a popup menu with all parameter options is opened.
 3. Rotate the control knob and highlight your desired parameter, and then select it. The trend graph of the selected parameter is displayed in the TREND GRAPH window.
When “OFF” is selected for “PARA1”, “PARA2” or “PARA3”, its trend graph will disappear, and then the trend graphs of other parameters will increase in amplitude and evenly occupy Parameters area. You can not select the same option for “PARA1”, “PARA2” and “PARA3” simultaneously other than “OFF”.

- **RESOLUTION**
 1. Rotate the control knob and highlight the field at the right of RESOLUTION.
 2. Press the control knob, and a menu pops up.
 3. Select 1S or 5S to review a 1-hour trend graph, or
 4. Select 1MIN, 5MIN or 10MIN to review a 96-hour trend graph.

- **L-RIGHT**
 1. Rotate the control knob to highlight the L-RIGHT option, and then press.
 2. If the 📏 mark is displayed at the upper left corner of the trend graph, you can rotate the control knob anticlockwise to review the earlier trend graph.
 3. If the mark 📏 is displayed at the upper right of the trend graph, you can rotate the control knob clockwise to review the later trend graph.

- **CURSOR**
 1. Rotate the control knob to highlight the CURSOR option, and then press.
 2. Rotate the control knob, and the trend cursor moves as per the preset resolution.
 3. The cursor time and the values displayed in the parameters area change accordingly.

- **REC (Recording)**
 The REC option allows you to print the currently displayed parameters and trend graph from the recorder.

- **Mark Event**
 If an event is marked A, B, C or D, the mark (A, B, C or D) will be displayed at the mark time on the trend graph.

NOTE

- The chapter uses "earlier" or "later" to indicate the time that an event happened. For example, May 28 is earlier than May 29, and 8:00 on May 29 is earlier than 9:00 on May 29.
9.3 Trend Table Recall

Select TREND TABLE >> in SYSTEM MENU. The following window appears.

![Trend Table](image)

Figure 9-2 Trend Table

The TIME is displayed on the left of the trend table. On the top is the latest time. From the upper to the lower, the interval between two adjacent times depends on the preset resolution. And the date is contained in the brackets. On the right of the TIME is the EVENT. If a marked event happened at a specific time, the mark will be displayed aside that time in the EVENT field. On the right of the trend table are parameter names and the trend data. The symbol "——" means the parameter is not measured at the corresponding time. Besides, the L-RIGHT option allows change of the parameter name and the trend data.

If you select to review the NIBP trend data, the measurement results as well as the specific measurement time (in the TEST AT filed) are displayed. If more than one measurement results are obtained in a time interval, only one result is to be displayed in the measurement result field.

RESOLUTION

1. Rotate the control knob to highlight the field at the right of RESOLUTION.
2. Press the control knob, and a popup value with the options, 1MIN, 5 MIN, 10MIN, 30MIN and 60MIN, is opened.
3. The time displayed in the TIME filed changes with the resolution.
■ UP-DOWN
1. Rotate the control knob to highlight the UP-DOWN option, and press.
2. If the mark is displayed at the lower right of the TIME field, you can rotate the control knob anticlockwise to page down and review the trend data of earlier time.
3. If the mark is displayed at the upper right of the TIME field, you can rotate the control knob clockwise to page up and review the trend data of later time.

■ L-RIGHT
1. Rotate the control knob to highlight the L-RIGHT option, and then press.
2. Rotate the control knob to select a parameters set.
The “>” mark on the right of the parameter names indicates the following page is available, and the “<” mark on the left of the parameter names indicates the previous page is available.
3. The parameter names and the trend data changes with the selected parameter set.

■ REC
The REC option allows you to print out the trend data of the currently displayed parameter(s).

■ Mark Event
If an event is marked A, B, C or D, the mark (A, B, C or D) will be displayed aside the mark time on the trend table.
9.4 NIBP Recall

Select NIBP RECALL >> in SYSTEM MENU. The following window appears.

<table>
<thead>
<tr>
<th>NS</th>
<th>NM</th>
<th>ND</th>
<th>PR</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>84</td>
<td>70</td>
<td>60</td>
<td>06-14-2007</td>
</tr>
<tr>
<td>108</td>
<td>84</td>
<td>70</td>
<td>60</td>
<td>06-14-2007</td>
</tr>
</tbody>
</table>

Figure 9-3 NIBP Recall

The NIBP RECALL window shows the non-invasive systolic pressure (NS), non-invasive mean pressure (NM), non-invasive diastolic pressure (ND), pulse rate (PR) and the measurement time (TIME). The optional pressure units (UNIT) are mmHg and kPa. NUM indicates the current measurement times. PR is derived from NIBP measurements. A maximum of ten measurements can be displayed on the screen once. If there are more, you may use the UP-DOWN option to review the data of a later or earlier time. If the measurement times surpass 800, only the latest 800 measurements are to be displayed. The REC option allows you to print out all measurement data of NIBP RECALL.
9.5 Alarm Event Recall

Select ALARM RECALL >> in SYSTEM MENU. The following menu appears.

![Figure 9-4 Alarm Recall Condition Selections](image)

In this menu, you may select the conditions of alarm review:

- **ALARM RECALL TIME**
 You can select the desired start time and end time for review. The end time can be set to either CURRENT TIME or SELF-DEFINE.

- **ALARM RECALL EVENT**
 The drop-down menu of ALARM RECALL EVENT provides a list of parameter options to be reviewed. Among them, ALL indicates all parameter alarm events are to be reviewed, H refers to the upper parameter limit and L refers to the lower parameter limit.

- **ALARM RECALL >>**
 If the ALARM RECALL TIME and the ALARM RECALL EVENT are both selected, you can select the ALARM RECALL >> option to open the ALARM RECALL window as shown in Figure 9-5.

This window contains the following information:

1. Time span (the start time and end time of alarm recall).
2. Alarm event type.
3. The alarming parameter, parameter value, alarm level and the alarm time.
4. The alarm event number (format: NO: n of N). N indicates the amount of alarm events and n indicates the sequence number of the currently displayed alarm event.

5. Parameter values at the time of the alarm event.

6. Two waveforms at the time of the alarm event. You can set the waveform length by selecting from the ALM REC TIME options in the ALARM SETUP menu. Please refer to 4.4.2 Alarm Setup.

Figure 9-5 Alarm Event Recall

- **UP-DOWN**

The monitor is able to store a maximum of 70 alarm events. But only one alarm event can be displayed in the ALARM RECALL window once. You can select the UP-DOWN option and then rotate the control knob to view an earlier or later alarm event.

- **L-RIGHT**

 You may select the L-RIGHT option and then rotate the control knob to review the 8,16, or 32-second waveforms stored.

- **REC**

 This option allows you to print out all parameter data and waveforms displayed in the current window using the recorder.
9.6 Non-Volatile Data Storage

To avoid losing patient’s data when the monitor is powered off intentionally or accidentally, the monitor can be equipped with a CF storage card (optional) to realize the non-volatile data storage function. During monitoring, the patient’s data, including trend data, NIBP measurement results, alarm events, arrhythmia events, and relative waveforms, will be saved into the CF storage card. When the monitor is powered on again, you can review the saved data using the TREND GRAPH, the TREND TABLE, the NIBP RECALL or the ARR RECALL menu, etc.

For the installation of the CF storage card, refer to 3.4.10 CF Storage Card.

Note

- Once the CF storage card is plugged properly, there will be a mark “✓” in front of “POWER-OFF DATA STORAGE” in the DEVICE CONFIG LIST menu.
- Data may not be saved into the CF storage card within a short time after the monitor is powered on.

Caution

- DO NOT plug or unplug the CF storage card when the monitor is powered on.
- A CF card is recommended being used on one patient monitor only. However, if you choose to use a used CF card on another monitor, make sure the two monitors have the same system time. Otherwise, the previously saved data may be cleared or overwritten.
10 ECG/RESP Monitoring

10.1 Overview
Two algorithm packages are optional for ECG monitoring:

1. Mindray DS algorithm package
 This package provides 3/5-lead monitoring.
2. Mortara algorithm package
 This package provides 3/5-lead monitoring, ST-segment analysis and extended ARR analysis.

10.2 ECG Monitoring Procedure
10.2.1 Preparation

1. Skin preparation
 The quality of ECG information displayed on the monitor is a direct result of the quality of the electrical signal received at the electrode. Proper skin preparation is necessary for good signal quality at the electrode. A good signal at the electrode provides the monitor with valid information for processing the ECG data. Choose flat area to place electrodes. Following is a suggested guideline for skin preparation:
 - Shave hair from skin at chosen sites.
 - Gently rub skin surfaces at sites to remove dead skin cells.
 - Thoroughly cleanse the site with a mild soap and water solution (do not use ether or pure alcohol because they will increase skin impedance).
 - Dry the skin completely before applying the electrodes.

2. Attach the ECG leadwire to the electrodes prior to placement.

3. Place the electrodes on the patient. If the conductive ointment is not applied to the electrodes, apply it before the placement.

4. Connect the electrode lead to the patient cable.

5. Make sure the monitor is turned on and is ready for monitoring.
10.2.2 Electrode Placement

⚠️ WARNING

- Use only the specified ECG cable for monitoring.
- When applying electrodes or connecting cables, make sure they are not connected to any conductive part or the ground. Verify that all ECG electrodes, including neutral electrodes, are securely attached to the patient.
- Skin irritation may result from the continuous application of the ECG electrodes. These should be checked each day. If there is an indication of excess skin irritation, replace the electrodes or change the location of the electrodes every 24 hours.
- Do not touch the patient, bed or instrument during defibrillation.
- When applying the ECG cable with no resistance to our patient monitor or other patient monitor that has no current limit resistance in it, the monitor cannot be applied to defibrillation.
- Interference from a non-grounded instrument near the patient and ESU interference can cause inaccuracy of the ECG waveform.
- Always dispose of, or recycle electrodes properly to prevent from environment contamination.
- Verify the lead fault detection prior to the start of monitoring. Unplug the ECG cable from the ECG connector and the screen should display the error message “ECG LEAD OFF” and an audible alarm should be activated.

NOTE

- The conductive ointment coatings should be isolated, and the chest electrodes should have no contact with each other to avoid short-circuit.
- Do not use the physiological saline to replace the electrode gel to avoid the electrodes being eroded.
- Using 3M electrodes is recommended during defibrillation.
3-Leadwire Electrode Placement

Following is the configuration per European standard when using three leadwires:

- R (right arm) electrode: near the right shoulder, directly below the clavicle.
- L (left arm) electrode: near the left shoulder, directly below the clavicle.
- F (left leg) electrode: on the left hypogastrium.

![Figure 10-1 Positions of 3-Leadwire Electrode Placement](image)

The chart below shows the label used to identify each leadwire. Included also is its associated color code per American (AHA) and European (IEC) standards.

<table>
<thead>
<tr>
<th>American Standard</th>
<th>European Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Color</td>
</tr>
<tr>
<td>RA</td>
<td>White</td>
</tr>
<tr>
<td>LA</td>
<td>Black</td>
</tr>
<tr>
<td>LL</td>
<td>Red</td>
</tr>
</tbody>
</table>
5-Leadwire Electrode Placement

Following is the configuration per American standard when using five leadwires:

- RA (right arm) electrode: near the right shoulder, directly below the clavicle.
- LA (left arm) electrode: near the left shoulder, directly below the clavicle.
- RL (right leg) electrode: on the right hypogastrium.
- LL (left leg) electrode: on the left hypogastrium.
- V (precordial) electrode: on the chest.

Attach the chest (V) electrode to one of the following positions indicated in Figure 10-3:

- V1: On the 4th intercostal space at the right sterna margin.
- V2: On the 4th intercostal space at the left sterna margin.
- V3: Midway between V2 and V4 electrodes.
- V4: On the 5th intercostal space at the left clavicular line.
- V5: On the left anterior axillary line, horizontal with V4 electrode.
- V6: On the left middle axillary line, horizontal with V4 electrode.
- V3R-V7R: On the right side of the chest in positions corresponding to those on the left.
- VE: Over the xiphoid.
When attaching the chest electrode to the back of a patient, place it at one of the following sites:

- **V7**: On the 5th intercostal space at the left posterior axillary line of the back.
- **V7R**: On the 5th intercostal space at the right posterior axillary line of the back.

![Figure 10-3 Positions of Chest Electrode](image)

The chart below shows the label used to identify each leadwire. Included also is its associated color code per American (AHA) and European (IEC) standards.

<table>
<thead>
<tr>
<th>American Standard</th>
<th>European Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Color</td>
</tr>
<tr>
<td>RA</td>
<td>White</td>
</tr>
<tr>
<td>LA</td>
<td>Black</td>
</tr>
<tr>
<td>LL</td>
<td>Red</td>
</tr>
<tr>
<td>RL</td>
<td>Green</td>
</tr>
<tr>
<td>V</td>
<td>Brown</td>
</tr>
</tbody>
</table>

Electrode Placement for Surgical Patients

Electrode placement during surgery is dependent on the type of surgery being performed. For example, with open chest surgery, the electrodes might be placed laterally on the chest or on the back. In the operating room, artifact can sometimes affect the ECG waveform due to the use of electrosurgery equipment. To help reduce this, place the electrodes on the right and left shoulders, the right and left sides near the stomach, and place the chest lead on the left side at mid-chest. Avoid placing the electrodes on the upper arms. This will cause the ECG waveform to be too small.
WARNING

- When using Electrosurgery equipment, patient leads should be placed in a position that is equal distance from the Electrosurgery electrotome and the grounding plate to avoid burns to the patient. The Electrosurgery equipment wire and the ECG cable must be kept separated and not allowed to tangle.
- When using Electrosurgery equipment, never place the ECG electrodes near the grounding plate of the Electrosurgery device. This will cause a great deal of interference with the ECG signal.

10.2.3 Characteristics of Quality ECG Signal

As shown in *Figure 10-4*, the normal QRS complex should exhibit the following characteristics.

- Tall and narrow with no notches.
- With a tall R-wave completely above or below the baseline.
- With a pacer spike no higher than the height of the R-wave.
- With the T-wave less than one-third of the height of the R-wave.
- With the P-wave much smaller than the T-wave.

![Figure 10-4 Standard ECG Waveform](image)

To display a 1-millivolt calibration pulse on the ECG wave, select the ECG CAL option in the ECG SETUP menu. A message "when CAL, can't monitor!" is displayed on the screen.

NOTE

- If the ECG waveform is too small, or not accurate, and the electrodes are secure and firmly attached to the patient, change the display to a different lead.
10.3 ECG Display

10.3.1 ECG Waveform

In the standard screen, one or two ECG waveform(s) is (are) displayed at the top of the display when LEAD TYPE is set to 3 LEADS or 5 LEADS respectively in the ECG SETUP menu.

As shown above, when 5 LEADS is selected, five labels are located above the ECG waveforms:

1. **ECG lead of channel 1 (Primary lead)**

 You can select the lead of channel 1 from the label options.

 ◆ When you use a 3-lead set, the monitor gives three lead options: I, II and III;

 ◆ When you use a 5-lead set, the monitor gives seven lead options: II, III, aVR, aVL, aVF, V and I.

2. **Gain of the channel-1 waveform**

 You may use this label to adjust the amplitude of the channel-1 ECG waveform. The gain options include \(\times 0.125, \times 0.25, \times 0.5, \times 1, \times 2 \) and AUTO. When AUTO is selected, the monitor adjusts the gain automatically. Besides, a 1mV scale is displayed at the right side of each ECG waveform. The height of the 1mV bar is directly proportional to the ECG waveform amplitude.

3. **Filter Method**

 The filtering enables clearer and more detailed waveforms. There are three filter methods for selection.

 ◆ **DIAGNOSTIC**: The monitor displays the ECG waveforms without filter;

 ◆ **MONITOR**: It effectively filters the artifacts that might cause false alarms;

 ◆ **SURGERY**: This filter is used to reduce the artifacts and interference from electrotherapy equipment.

The selected filter is applied to both channels, but the filter label is merely displayed above the first ECG waveform.
WARNING

- Only in the DIAGNOSTIC mode will the monitor provide non-processed real signal waveforms. In the MONITOR or SURGERY mode, the ECG waveforms may have slight distortions and the result of the ST segment analysis may be affected greatly. In the SURGERY mode, the ARR analysis result may be affected to some extent. Hence, the DIAGNOSTIC mode is recommended when monitoring a patient in an environment with slight interference.

4. ECG lead of channel 2 (Secondary lead)
 You can select the lead of channel 2 in the same method used to select the channel-1 lead.

5. Gain of the channel-2 waveform
 You can adjust the gain of the channel-2 ECG waveform in the same method used for channel 1.

Besides, pace pulse marks “|” are shown above the ECG wave if the PACE is set to ON and the patient has a paced signal. If a defibrillator is connected, the synchronization marks are shown on the ECG wave.

NOTE

- If the amplitude of an ECG waveform is too large, the peak of the waveform might not be displayed. In this case, you should change the waveform gain properly.
- The selected leads of channel 1 and channel 2 should not be identical. Otherwise, the system will change one of them automatically. In the MULTI-LEADS DISPLAY mode or the HALF-SCAN MULTI-LEADS display mode, the leads of both channels cannot be set.

10.3.2 ECG Parameters

Figure 10-6 ECG Parameters

The parameters related to ECG are displayed to the right of the ECG waveforms as shown above. The heartbeat indicator flashes in the same rate with the patient’s heartbeat or pulse. The status of PACE, ST1, ST2, PVCs and NOTCH is shown at the right side of HR/PR reading.

If your monitor is not configured with ST and ARR features, the numerics of ST1, ST2 and PVCs will not be displayed.
10.4 ECG Setup Menu

To display the ECG SETUP menu, use the knob to select the ECG label in the parameter windows. The options available in the menu vary with each algorithm package.

![ECG SETUP Menu (Mindray DS Algorithm Package)](image1)

![ECG SETUP Menu (Mortara Algorithm Package)](image2)
The options of ECG SETUP menu are listed below. However, your algorithm package may not include some of these options.

- **HR ALM**
 Heart rate alarm on/off status
 ON: When a heart rate alarm occurs, the monitor gives alarm indications and stores the alarm;
 OFF: When a heart rate alarm occurs, the monitor neither gives alarm indications nor stores the alarm;
 When OFF is selected, the 🚨 icon is displayed on the right of the ECG label.

- **ALM LEV**
 Alarm level
 Options: HIGH, MED and LOW.

- **ALM REC**
 Alarm recording
 ON: When a heart rate alarm occurs, the monitor enables the recording;
 OFF: When a heart rate alarm occurs, the monitor does not enable the recording.

- **ALM HI**
 Upper alarm limit
 Determines the upper ECG alarm limit.

- **ALM LO**
 Lower alarm limit
 Determines the lower ECG alarm limit.

For different patient types, the upper/lower limits of the heart rate alarm may vary in the following range.

<table>
<thead>
<tr>
<th>Patient type</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
<th>Increment (beat/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>(lower limit+2)~300</td>
<td>15~(upper limit-2)</td>
<td>1</td>
</tr>
<tr>
<td>Pediatric</td>
<td>(lower limit+2)~350</td>
<td>15~(upper limit-2)</td>
<td>1</td>
</tr>
<tr>
<td>Neonate</td>
<td>(lower limit+2)~350</td>
<td>15~(upper limit-2)</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE

- Always set the alarm limits according to the clinical condition of the individual patient.
- In many cases, the upper limit of heart rate alarms should not exceed 20 beats per minute higher than the patient's heart rate.

- **HR FROM**
 Heart rate source
 Options: ECG, SPO2, IBP, AUTO and ALL
1. ECG: HR is always calculated from ECG.

2. SpO2: If the ECG signal is seriously interfered, you can select SpO2, which means PR will be derived from PLETH waveform. In this case, PULSE is displayed to the right of the ECG label while the PR reading is displayed below. The monitor activates pulse beeps instead of heartbeat beeps.

3. IBP: If the ECG signal is seriously interfered, you can select IBP which means PR will be calculated by IBP module. In this case, PULSE is displayed to the right of the ECG label while the PR reading is displayed below. The monitor activates pulse beeps from IBP module.

4. AUTO: The monitor determines the heart rate source depending on the signal quality. The priorities for heart rate calculation are: ECG, SpO2, IBP.

5. ALL: The monitor displays both the HR and the PR values. PR value is displayed at the right of SpO2 label or IBP label, SpO2 takes priority of IBP. The monitor will alarm for both abnormal HR and PR. HR is given priority in determining the source of the beep tone. If HR is not available, the sound will be from the PR.

- **HR CHANNEL**
 - CH1: The heart rate is determined by the first ECG waveform;
 - CH2: The heart rate is determined by the second ECG waveform;
 - AUTO: The monitor automatically selects an optimal channel to calculate the heart rate.

This option is available in Mindray DS algorithm package only. For Mortara algorithm package, the monitor uses both channels to calculate the heart rate simultaneously.

- **LEAD TYPE** Options: 3 LEADS, 5 LEADS;

- **SWEEP** Options: 12.5, 25.0 and 50.0 mm/s;

- **ECG DISPLAY**

When LEAD TYPE is set to 5 LEADS, you can select one of the following options:

1. NORMAL DISPLAY: The monitor displays two ECG waveforms.
2. MULTI-LEADS DISPLAY: The monitor displays six ECG waveforms, which occupies the whole waveforms area.
3. HALF-SCN MULTI-LEADS: The monitor displays six ECG waveforms, which only occupies four waveform positions.

When LEAD TYPE is set to 3 LEADS, only NORMAL DISPLAY can be selected for the ECG DISPLAY.
Other Setup

Select OTHER SETUP >> in the ECG SETUP menu. The following menu appears. The options available in the menu vary with each algorithm package.

![Figure 10-9 Other ECG Setup (Mindray DS Algorithm Package)](image1)

In this menu, you can select any of the displayed option. All options are listed below. Your algorithm package may not include some of these options.

- **SMART LEAD**
 - **OFF**: If there is a LEAD OFF in the HR-derived channel, the system will automatically switch to another lead to restore the display of the ECG waveform in the HR-derived channel.
 - **ON**: The SMART LEAD OFF is turned off.

![Figure 10-10 Other ECG Setup (Mortara Algorithm Package)](image2)
When ECG is in NORMAL DISPLAY mode, if the SMART LEAD OFF is configured ON and there is a LEAD OFF in the HR-derived channel, the system will automatically switch to another lead to restore the display of the ECG waveform in the HR-derived channel. When the LEAD OFF condition is corrected, the leads are automatically switched back. However, if you manually switch the HR-derived channel, change the ECG display mode, or turn off SMART LEAD OFF before the LEAD OFF condition is corrected, the leads will not be switched back.

Switching rules for SMART LEAD OFF:

<table>
<thead>
<tr>
<th>LEAD OFF condition</th>
<th>HR-derived channel automatically switches to</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA OFF</td>
<td>III</td>
</tr>
<tr>
<td>LL OFF</td>
<td>I</td>
</tr>
<tr>
<td>LA OFF</td>
<td>II</td>
</tr>
<tr>
<td>V OFF</td>
<td>II</td>
</tr>
<tr>
<td>RL OFF</td>
<td>None</td>
</tr>
<tr>
<td>Any two out of LL, RA and LA fall off.</td>
<td>None</td>
</tr>
<tr>
<td>LL, RA or LA, and V fall off together</td>
<td>Same as LL, RA or LA falls off.</td>
</tr>
</tbody>
</table>

NOTE

- The SMART LEAD OFF function is available only when the LEAD TYPE is 5 LEADS.
- When the HR CHANNEL is set to AUTO, SMART LEAD OFF does not work as long as there is ECG waveform displayed in either channel 1 or 2.
- When you perform ECG calibration, SMART LEAD OFF does not work.

BEAT VOL

Beat volume
Range: 0-10. 0 indicates disabled and 10 indicates the maximum volume.

PACE

ON: When ON is selected, a detected pacemaker signal is indicated by a "|" symbol above the ECG waveform.
OFF: When OFF is selected, the pacemaker analysis is disabled.
NOTE

- When monitoring a patient with a pacemaker, PACE must be turned ON. Otherwise, the system will count the pacemaker pulse as QRS complex. Do not completely depend on the alarms of heart rate. The patient with a pacemaker must be nearly monitored.
- When PACE is turned ON, the system will neither detect the arrhythmia relating to premature ventricular beats (including PVCs counting) nor perform the ST analysis. When monitoring a patient without a pacemaker, PACE should be turned OFF.
- The PACE tag can be printed in the real-time recording when PACE is turned ON.

- **PACER RATE**
 Some pace pulses may be difficult to suppress. When this happens, the pace pulse may be counted as a QRS complex, and could result in incorrect HR measurements and failure to detect some arrhythmias. This option allows you to input the heart rate of pacemaker, so that the software can calculate the HR and detect the arrhythmias more accurately. When PACE is set to OFF, this option is disabled.

- **NOTCH**
 Determines whether filter or not.
 ON: The monitor protects the signals from the noise generated by the power line.
 OFF: No filtering.

NOTE

- If the filter method of the ECG waveform is set to a non-diagnostic mode, only the NOTCH option ON is active and the monitor filters the signals of the power line frequency.

- **CASCADE**
 ECG cascade
 ON: The monitor displays the waveform of each channel in two lines.
 OFF: The monitor displays the waveform of each channel in one line.
 The CASCADE can be turned ON only if the monitor is set to NORMAL DISPLAY mode and the SCAN TYPE is set to REFRESH.

- **DEFIB SYNC**
 Defibrillator synchronization
 ON: The function of defibrillation is enabled;
 OFF: The function of defibrillation is disabled.
If the function of defibrillator synchronization is enabled and the ventricular defibrillation is applied, 100ms/+5V defibrillator synchronization signals will be output through the auxiliary output connector to the defibrillation equipment.

When the defibrillator synchronization is enabled, the “Defib Sync ON!” message is displayed in the prompt information area, at the lower left corner of the screen. This message disappears after 10 seconds. Besides, the technical alarms area also shows the “DEFIB SYNC ON” message.

NOTE

- Defibrillator synchronization can be enabled only if the AUX OUTPUT in the USER MAINTAIN menu is set to DEFIB. SYN. Otherwise, this function is disabled.
- When the monitor is started, DEFIB SYNC is set to OFF as a default.

WARNING

- Improper defibrillation will endanger the patient’s safety. You user should decide whether to defibrillate the patient based on the patient’s actual condition.
- Before defibrillating the patient, the user should ensure the defibrillator and the monitor have been tested as a system and the two devices can work together safely and effectively.
- Before defibrillating the patient, the user should ensure the defibrillator has been connected to the auxiliary output port of the monitor, the defibrillation synchronization function is enabled, and the filter mode is set to DIAGNOSTIC.
- When the defibrillation is done, sure to disable the defibrillation function and select the filter method as needed.

- **ECG CAL**
 Select this option to begin calibrating the ECG. To stop calibration, select this option again, or change the ECG lead selection on the screen.

- **ADJUST WAVE POS >>**
 This is used to adjust the position of the ECG waveform on the screen. Select this option to access the ADJUST WAVE POS menu. Open the CH NAME popup menu and select the channel to be adjusted. Afterwards, select the UP-DOWN option and rotate the control knob to adjust the position of the selected channel on the screen. The BACK TO DEFAULT option allows you to restore the waveform to the default position on the screen.
You can use this option to access the ECG CONFIG menu. You may choose the FACTORY CONFIG or the USER CONFIG. After finishing the selection, a dialog pops up asking for confirmation of your selection.

10.5 ST Analysis
10.5.1 Overview

- The function of ST analysis is optional.
- In the factory configuration, ST analysis is disabled.
- When turning ST ANALYSIS on, the monitor selects DIAGNOSTIC mode automatically. You can set the monitor to MONITOR or SURGERY mode as required. However, ST analysis will turn off automatically.
- With the ST analysis, the variance of the ST segment at the waveform tracks of the selected lead can be measured. The ST measurement result is displayed numerically in the ST1 and ST2 positions in the parameter window.
- You can review the ST trend graph and trend data in the TREND GRAPH and the TREND TABLE menus.
- Measurement unit of the ST segment: mV (millivolt).
- Measurement symbols of the ST segment: “+” means positive elevation, “−” means negative elevation.
- Measurement range of the ST segment: -2.0 mV to +2.0 mV.

WARNING

- ST analysis is not intended for neonatal patients.
- The ST algorithm has been tested for accuracy of the ST segment data. The significance of the ST segment changes need to be determined by a clinician.
10.5.2 3/5-Lead ST Analysis Menu

Select ST ANALYSIS >> in ECG SETUP menu. The following menu appears.

<table>
<thead>
<tr>
<th>ST ANAL</th>
<th>ALM HI</th>
<th>ST ALM</th>
<th>ALM LO</th>
<th>ALM LEV</th>
<th>ALM REC</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>0.20</td>
<td>OFF</td>
<td>-0.20</td>
<td>MED</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform the ST analysis only when switch is On.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 10-12 ST Analysis

In this menu, you can perform the following settings:

- **ST ANAL**
 - ST analysis
 - ON: Enables the ST analysis;
 - OFF: Disables the ST analysis.

NOTE

- **ST analysis can be carried out only when the filter method is set to DIAGNOSTIC.**
 - When ST analysis is switched on, the filter method will automatically switch to DIAGNOSTIC if it is not in the diagnostic mode. However, if you switch the filter method to MONITOR or SURGERY, ST analysis will turn off automatically. In case that you change MONITOR or SURGERY to DIAGNOSTIC and ST analysis keeps off, you can turn it on manually.

- **When ST analysis is switched on, the notch filter is switched on automatically.**
 - However, you can manually switch NOTCH off as necessary.

- **ST ALM**
 - ST segment alarm
 - ON: If the measured ST numerics exceed the alarm limit, the monitor gives alarm indications and saves the alarm;
 - OFF: If the measured ST numerics exceed the alarm limit, the monitor does not give alarm indications or saves the alarm.

 When OFF is selected, the 🔄 icon is displayed on the right of ST1 in the parameter window.
ST ALM

ST alarm level
Options: HIGH, MED and LOW;

ALM REC

ST alarm recording
ON: The monitor starts recording when an ST alarm occurs;
OFF: The monitor does not record when an ST alarm occurs.

ALM HI

Determines the upper limit of the ST alarm; 2.0mV is the highest.

ALM LO

Determines the lower limit of the ST alarm; -2.0 mV is the lowest.

NOTE

- The alarm limits for two ST segment numerics are identical. You cannot set the alarm limit of one channel separately.

10.5.3 Adjusting ST Measurement Point

The ST measurement for each beat complex is the ventical difference between two measurement points. The isoelectric point provides the baseline for the measurement and the ST point provides the other measurement point.

![Figure 10-13 ST Measurement Point]

The ST measurement points need to be adjusted when you start monitoring, and if the patient’s heart rate or ECG morphology changes significantly. Artifactual ST segment depression or elevation may occur if the ISO or the ST point is incorrectly set.

NOTE

- Abnormal QRS complex is not considered in ST analysis.
Mortara algorithm package

To adjust the points:

1. Select DEF POINT >> in the ST ANALYSIS menu to open the following window. Three vertical cursors indicate the positions of the ISO, J and ST points.

![Figure 10-14 ST Measurement Point](image)

2. Select VIEW LEADS option, and then rotate the knob to select a suitable ECG lead for ST measurement, with a visible J-point and a visible P wave.

3. Select ISO, J or ST option, and then rotate the knob to adjust the position of each point respectively.
 - The ISO-point cursor positions the isoelectric point relative to the R-wave peak. Position the ISO-point in the middle of the flattest part of the baseline (between the P and Q waves or in front of the P wave).
 - The J-point cursor positions the J-point relative to the R-wave peak. It helps to correctly position the ST-point. Position the J-point at the end of the QRS complex and the beginning of the ST segment.
 - The ST-point is positioned a fixed distance from the J-point, either J+60 or J+80. Move the J-point cursor to position the ST-point at the midpoint of the ST segment.
10.6 Arrhythmia Analysis

10.6.1 Overview

The monitor uses the user-selected primary or secondary ECG lead for arrhythmia analysis. In clinical application, the medical professionals can use the arrhythmia analysis to evaluate patients’ condition (such as heart rate, PVCs rate, rhythm and ectopic beat) and give proper treatment.

The arrhythmia analysis of the monitor has the following characteristics:

- Applicable to the monitoring of a patient either with a pacemaker or without a pacemaker.
- Disabled in the factory configuration.
- Capability of raising the doctor’s attention to the patient’s heart rate, by measuring and classifying the arrhythmia and the abnormal heartbeat and triggering the alarm.
- Capability of storing the latest 80 alarm events (including the ECG waveform respectively 4 seconds before and after the alarm), when performing the arrhythmia analysis. You can review the arrhythmia events through the menu below.

⚠️ WARNING

- The arrhythmia analysis program is intended to detect ventricular arrhythmias. It is not intended to detect atrial or supraventricular arrhythmias. Occasionally it may incorrectly identify the presence or absence of an arrhythmia. Therefore a physician must analyze the arrhythmia information in conjunction with more clinical findings.
- The arrhythmia detection is not intended for neonatal patients.
10.6.2 Arrhythmia Options

Mortara algorithm package

When Mortara algorithm package is configured, your monitor has the following extended arrhythmia analysis option.

<table>
<thead>
<tr>
<th>Arrhythmia Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASYSTOLE</td>
<td>No QRS complex within the defined time in absence of ventricular fibrillation or chaotic signals.</td>
</tr>
<tr>
<td>VFIB</td>
<td>Ventricular fibrillation occurs and persists for 6 seconds.</td>
</tr>
<tr>
<td>VTAC</td>
<td>Ventricular HR is greater or equal to the defined limit and the number of consecutive PVCs is greater than the defined value.</td>
</tr>
<tr>
<td>PNP</td>
<td>No pace pulse within ((60 \times 1000 / \text{pace rate} + 90)) milliseconds following a QRS complex or a pacer pulse (for paced patient only).</td>
</tr>
<tr>
<td>PNC</td>
<td>No QRS complex within 300 milliseconds following a pace pulse (for paced patient only).</td>
</tr>
<tr>
<td>V RHYTHM</td>
<td>Ventricular HR is less than the defined limit and the number of PVCs is greater than 3.</td>
</tr>
<tr>
<td>COUPLETT</td>
<td>Pair PVCs are detected.</td>
</tr>
<tr>
<td>VT > 2</td>
<td>Ventricular HR is greater than or equal to the defined limit and the number of PVCs is greater than or equal to 3 but less than the defined limit.</td>
</tr>
<tr>
<td>BIGEMINY</td>
<td>A dominant rhythm of N, V, N, V, N, V.</td>
</tr>
<tr>
<td>TRIGEMINY</td>
<td>A dominant rhythm of N, N, V, N, N, V, N, N, V.</td>
</tr>
<tr>
<td>R ON T</td>
<td>R on T is detected.</td>
</tr>
<tr>
<td>MULTIF. PVC</td>
<td>More than two forms of PVCs are detected within the defined search window (3 to 31).</td>
</tr>
<tr>
<td>IRR. RHYTHM</td>
<td>Consistently irregular rhythm</td>
</tr>
<tr>
<td>MISSED BEATS</td>
<td>No beat detected for 1.75x average R-R interval for HR <120, or No beat for 1 second with HR >120 (non-paced patient only), or No beat detected for more than the set pause threshold.</td>
</tr>
<tr>
<td>BRADY</td>
<td>The HR is less than or equal to the defined bradycardia low limit.</td>
</tr>
<tr>
<td>TACHY</td>
<td>The HR is greater than or equal to the defined tachycardia high limit.</td>
</tr>
</tbody>
</table>
10.6.3 Arrhythmia Analysis Menu

Select ARR ANALYSIS >> in ECG SETUP menu. The following menu appears. The menu items vary with the algorithm packages.

<table>
<thead>
<tr>
<th>ARR ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARR ANAL</td>
</tr>
<tr>
<td>PVCs ALM</td>
</tr>
<tr>
<td>ALM LEV</td>
</tr>
<tr>
<td>ALM REC</td>
</tr>
<tr>
<td>ALM HI</td>
</tr>
</tbody>
</table>

Perform Arr. analysis only when the switch is On.

EXIT

Figure 10-15 Arrhythmia Analysis (Mortara algorithm package)

In this menu, you can perform the following settings:

- **ARR ANAL**
 - Arrhythmia analysis
 - ON: Enables the arrhythmia analysis;
 - OFF: Disables the arrhythmia analysis.

- **PVCs ALM**
 - PVCs alarm
 - ON: When the PVCs alarm occurs, the monitor gives alarm indications and saves the alarm;
 - OFF: When the PVCs alarm occurs, the monitor neither gives alarm indications nor saves the alarm;
 - When OFF is selected, the icon is displayed on the right of PVCs in the parameter window.

- **ALM LEV**
 - Alarm level
 - Options: HIGH, MED and LOW.

- **ALM REC**
 - Alarm recording
 - ON: The monitor starts recording when the PVCs alarm occurs.
 - OFF: The monitor does not record when the PVCs alarm occurs.

- **ALM HI**
 - Upper alarm limit
 - Determines the upper limit of the PVCs alarm. Range: 1 – 10. An alarm is triggered when the PVCs exceeds the upper limit.
10.6.4 Arrhythmia Relearn

During ECG monitoring, you may need to start an arrhythmia relearn when a dramatic change in the patient’s ECG pattern has occurred. A change in the ECG pattern could result in:

- Incorrect arrhythmia alarms,
- Loss of ST measurements, and/or
- Inaccurate heart rate.

Arrhythmia relearn allows the monitor to learn the new ECG pattern to correct arrhythmia alarms and heart rate value, and to restore ST measurements. To manually start an arrhythmia relearn, select the ARR RELEARN option in the ARR ANALYSIS menu. The “ARR LEARNING” message will be displayed in the information area.

10.6.5 Arrhythmia Alarm Setup

Select ARR ALARM >> in the ECG SETUP menu. The following menu appears.

<table>
<thead>
<tr>
<th>ARR ALARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASYSTOLE</td>
</tr>
<tr>
<td>VFIB</td>
</tr>
<tr>
<td>VTAC</td>
</tr>
<tr>
<td>R ON I</td>
</tr>
<tr>
<td>V1>2</td>
</tr>
<tr>
<td>COUPLETT</td>
</tr>
<tr>
<td>MULTIF. PUC</td>
</tr>
</tbody>
</table>

When the ASYSTOLE is alarming, start up the recorder to record the alarm event or not.

EXIT
In the menu, the ALM field indicates the alarm on/off status, REC indicates the alarm recording on/off status and LEV indicates the alarm level. You can change the settings as described below.

- **ALL ALM ON**
 - All alarms on
 - Enables all arrhythmia alarms;

- **ALL ALM OFF**
 - All alarms off
 - Disables all arrhythmia alarms that can be disabled;

- **ALL REC ON**
 - All recording on
 - Enables the recording of all arrhythmia alarms;

- **ALL REC OFF**
 - All recording off
 - Disables the recording of all arrhythmia alarms;

- **ALM LEV**
 - Options: HIGH, MED and LOW.
 - Sets the level of all arrhythmia alarms that can be set to the same value.

- **UP-DOWN**
 - Page up or down

Figure 10-16 Arrhythmia Alarm Setup (Mortara algorithm package)

<table>
<thead>
<tr>
<th>Bigeminy</th>
<th>ALM</th>
<th>LEV</th>
<th>REC</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachy</td>
<td>ON</td>
<td>MED</td>
<td>OFF</td>
<td>ALL ALM ON</td>
</tr>
<tr>
<td>Brady</td>
<td>ON</td>
<td>MED</td>
<td>OFF</td>
<td>ALL REC ON</td>
</tr>
<tr>
<td>Irreg Rhythm</td>
<td>ON</td>
<td>MED</td>
<td>OFF</td>
<td>ALM LEV</td>
</tr>
<tr>
<td>FMC</td>
<td>ON</td>
<td>MED</td>
<td>OFF</td>
<td>MED</td>
</tr>
<tr>
<td>PNP</td>
<td>ON</td>
<td>MED</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Missed Beats</td>
<td>ON</td>
<td>MED</td>
<td>OFF</td>
<td>UP-DOWN</td>
</tr>
</tbody>
</table>

Open or close the Bigeminy alarm.
10.6.6 Arr Threshold

Select ARR THRESHOLD >> in the ECG SETUP menu and the following menu appears. You can change the threshold settings in this menu. An alarm will be triggered when a rate exceeds a threshold.

<table>
<thead>
<tr>
<th>ARR Event</th>
<th>Range</th>
<th>Default</th>
<th>Step</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASYS DELAY</td>
<td>3 to 10</td>
<td>5</td>
<td>1</td>
<td>s</td>
</tr>
<tr>
<td>VTAC RATE</td>
<td>100 to 200</td>
<td>130</td>
<td>5</td>
<td>bpm</td>
</tr>
<tr>
<td>VTAC PVC</td>
<td>3 to 12</td>
<td>6</td>
<td>1</td>
<td>Beats</td>
</tr>
<tr>
<td>MULTIF. PVC</td>
<td>3 to 31</td>
<td>15</td>
<td>1</td>
<td>Beats</td>
</tr>
<tr>
<td>TACHY HI</td>
<td>Adult: 100 to 300</td>
<td>Adult: 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pediatric: 160 to 300</td>
<td>Pediatric: 160</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>bpm</td>
</tr>
<tr>
<td>BRADY LO</td>
<td>Adult: 15 to 60</td>
<td>Adult: 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pediatric: 15 to 80</td>
<td>Pediatric: 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>bpm</td>
</tr>
</tbody>
</table>

Figure 10-17 ARR Threshold Setup
10.6.7 Arrhythmia Recall

Select ARR RECALL >> in the ARR ANALYSIS menu. The following menu appears. You can review any stored arrhythmia event in this menu.

![Figure 10-18 Arrhythmia Recall](image)

You can perform the following operations:

- **UP-DOWN**
 A maximum of 10 arrhythmia events can be displayed in the window each time. In case of more than 10 events, you can use the UP-DOWN option to review more. At most 8 pages can be reviewed.

- **CURSOR**
 This option allows you to select an arrhythmia event displayed in the window.

- **DELETE**
 This option allows you to delete a selected arrhythmia event.

- **RENAME**
 This option allows you to change the name of a selected arrhythmia event.
 Select this option, and rotate the control knob till the desired name appears. Then, press the control knob to select the name.

- **WAVE >>**
 Selecting this option opens the following window. In the window, the waveform and the time of a selected arrhythmia event as well as the parameter values at the event time are displayed.
Figure 10-19 Arrhythmia waveform Review

You can perform the following operations:

- **UP-DOWN**
 This option allows you to page up and down to review the waveform and the parameters of other arrhythmia events.

- **L-RIGHT**
 This option allows you to review 8-second waveform of the currently displayed arrhythmia event.

- **REC**
 Selecting this option starts the recording of the waveform and the parameters of the currently displayed arrhythmia event.

- **EXIT**
 This option allows you to return to the ARR RECALL window.
10.7 RESP Monitoring
10.7.1 Overview

Respiration is detected by measuring thoracic impedance. The monitor measures the change of the impedance between the RA and LA electrodes of the ECG lead I, or the RA and LL electrodes of the ECG lead II, and produces a respiration waveform as shown below.

![Figure 10-20 Respiration Waveform and Parameter](image)

1. Waveform name.
2. RESP lead: I or II
3. Waveform gain: 7 options are available: ×0.25, ×0.5, ×1, ×2, ×3, ×4, ×5. If the gain is too large, the upper part of the waveform may not be normally displayed.
4. RESP label: Selecting this label, you can open the RESP SETUP menu.
5. RR: Respiration rate numerics.

NOTE

- Respiration monitoring is not recommended on patients who are very active, as this will cause false alarms.
- It is recommended to set Waveform gain to 1 when external electromagnetic interference is great.
10.7.2 Electrode Placement

Since the same electrodes are used for ECG and respiration monitoring, the electrode placement is very important. Some patients, due to their clinical condition, expand their chest laterally, causing a negative intrathoracic pressure. In these cases it is better to place the two electrodes used for respiration monitoring laterally in the right axillary and left lateral chest areas, at the maximum point of the breathing movement, to optimize the respiratory waveform.

NOTE

- To optimize the respiration waveform, place the RA and LA electrodes horizontally when the ECG Lead I is selected, and place the RA and LL electrodes diagonally when the ECG lead II is selected.
- Try to avoid placing the electrodes so the liver area and the ventricles of the heart are in path between the electrodes used for respiration, to avoid cardiac artifact to overlay on the ECG. This is particularly important when monitoring neonate patients.

Figure 10-21 Electrode Placement
10.7.3 Respiration Setup

Selecting the RESP label on the screen opens the following menu.

![RESP Setup Menu](image)

Figure 10-22 RESP Setup Menu

In this menu, you can perform the following settings.

- **ALM**
 - Alarm on/off
 - ON: When a respiration rate alarm occurs, the monitor gives alarm indications and stores the alarm;
 - OFF: When a respiration rate alarm occurs, the monitor neither gives alarm indications nor stores the alarm;
 - When OFF is selected, the 🕰️ icon is displayed on the right of the RESP label.

- **ALM LEV**
 - Alarm level
 - Options: HIGH, MED and LOW.

- **ALM REC**
 - Alarm recording
 - ON: When a respiration rate alarm occurs, the monitor enables the recording;
 - OFF: When a respiration rate alarm occurs, the monitor does not enable the recording

- **ALM HI**
 - Upper alarm limit
 - Determines the upper limit of respiration rate alarm.

- **ALM LO**
 - Lower alarm limit
 - Determines the lower limit of respiration rate alarm.
For different patient types, the upper/lower limits of the respiration rate alarm may vary in the following range.

<table>
<thead>
<tr>
<th>Patient type</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
<th>Increment (breath/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>(lower limit+2) ~120</td>
<td>0~(upper limit-2)</td>
<td>1</td>
</tr>
<tr>
<td>Neonate/pediatric</td>
<td>(lower limit+2) ~150</td>
<td>0~(upper limit-2)</td>
<td>1</td>
</tr>
</tbody>
</table>

- **APNEA ALM**
 Apnea alarm
 Determines whether the patient’s cessation of breath is an apnea event. Range: 10 – 40 seconds.

- **Sweep**
 Waveform speed
 Options: 6.25, 12.5 and 25.0 mm/s.

- **HOLD TYPE**
 Calculation type
 Options: AUTO and MANUAL

1. **AUTO**: When AUTO is selected, the monitor automatically determines the detection threshold for respiration and calculates the respiration rate. The HOLD HI and HOLD LO options are inactive.
2. **MANUAL**: When MANUAL is selected, the user determines the detection threshold for respiration and the monitor calculates the respiration rate depending on the user-selected criteria.

- **CONFIG >>**
 Select CONFIG >> to access the RESP CONFIG menu. You can select either FACTORY CONF or USER CONF. After finishing the selection and exiting the menu, a dialog box pops up asking for confirmation of your selection.
10.8 Maintenance and Cleaning

⚠️ WARNING

- Before cleaning the ECG cable, be sure to disconnect the monitor from the ECG cable, or shut down the system and disconnect all power cords from the outlet.
- If the ECG cable is damaged or aged, replace with a new one.

 Cleaning
The exterior surfaces of the ECG cable may be cleaned with a soft cloth, dampened with the alcohol, and then be air-dried or dried with a clean dry cloth.

 Disinfection
Disinfection may cause damage to the equipment. We recommend the disinfection be contained in the hospital’s servicing schedule only when necessary. The equipment should be cleaned prior to disinfection.

 Sterilization
Sterilization may cause damage to the equipment. We recommend the sterilization be contained in the hospital’s servicing schedule only when necessary. The equipment should be cleaned prior to sterilization.
11 SpO₂ Monitoring

11.1 Overview

The monitor measures the patients’ SpO₂ (oxygen saturation) and displays:
1. Pulse rate (PR) value in the ECG or SpO₂ parameter window.
2. PLETH waveform in the waveforms area.
3. Oxygen saturation (SpO₂%) value in the SpO₂ parameter window.

The PR value is displayed in the ECG parameter window only if:
1. SpO₂ is selected from the HR FROM options in the ECG SETUP menu; or
2. AUTO is selected from the HR FROM options in the ECG SETUP menu and no ECG signal is received.

As the following figure shows, the PLETH waveform is located on the left while the SpO₂ parameter window on the right. The SpO₂ value is displayed by percentage and is followed by a perfusion indicator (pro rata with the pulse intensity). Besides, the SpO₂ label at the upper left corner of the parameter window allows you to access the SpO₂ SETUP menu.

![Figure 11-1 SpO₂ Waveform and Parameter](image)

1. PLETH waveform
2. SPO2 label
3. SpO2 value
4. Perfusion indicator
5. Pulse rate
PITCH TONE

The PITCH TONE function refers to the monitor’s capability to vary the pitch of the heart rate tone or pulse rate tone with the change of the SpO₂ reading. This monitor provides 22 pitch levels. The pitch rises as the SpO₂ reading increases toward 100% and falls as it decreases. Although the tone pitch cannot be adjusted manually, the tone volume can be adjusted by one of the following two ways, depending on the setting of the HR FROM item in the ECG SETUP menu:

- If the HR FROM is set to SPO2 or IBP, you can adjust the PITCH TONE volume by changing the setting of the PR SOUND item in the SPO2 SETUP or IBP (1,2) SETUP menu;
- In case of other settings, you can adjust the PITCH TONE volume by changing the setting of the BEAT VOL item in the ECG SETUP menu.

If the PR SOUND or BEAT VOL is set to 0, the PITCH TONE function will be muted; if the SpO₂ module is disabled, the PITCH TONE function will be disabled as well.

NOTE

- SpO₂ and SPO2 are used interchangeably in this chapter.

11.2 Mindray DS SpO₂ Module

NOTE

- This section is only applicable to the monitor equipped with a Mindray DS SpO₂ module.

11.2.1 Principles of Operation

SpO₂ monitoring is a non-invasive technique used to measure the amount of oxygenated hemoglobin and pulse rate by measuring the absorption of selected wavelengths of light. The light generated in the probe passes through the tissue and is converted into electrical signals by the photodetector in the probe. The SpO₂ module processes the electrical signal and displays on the screen a waveform and digital values for SpO₂ and pulse rate.

The sensor measurement wavelengths are nominally 660nm for the red LED and 940nm for infrared LED. The maximum optical power output for LED is 4mW.
11.2.2 Precautions

⚠️ WARNING

- The SpO2 value might be overestimated in the presence of Hb-CO, Met-Hb or dye dilution chemicals.
- Check if the sensor cable is in normal condition before monitoring. Do not use the SpO2 sensor once the package or the sensor is found damaged.
- Verify sensor cable fault detection before beginning monitoring. Unplug the SpO2 sensor cable from the connector. The screen will display the prompt information “SPO2 SENSOR OFF” and the audible alarm is activated.
- ES (Electrosurgery) equipment wire and SpO2 cable must not be tangled up.
- Do not put the SpO2 sensor on the limb with arterial catheter or venous syringe.
- Do not perform SpO2 and NIBP measurements on the same limb simultaneously. Obstruction of blood flow during NIBP measurements may adversely affect the reading of the SpO2 value.
- Prolonged continuous monitoring may increase the risk of undesirable changes in skin characteristics, such as irritation, reddening, blistering or burns. Inspect the sensor site every two hours and move the sensor if the skin quality changes. Change the application site every four hours. For neonates or patients with poor peripheral blood circulation or sensitive skin, inspect the sensor site more frequently.

11.2.3 Monitoring Procedure

Sensor selection for SpO2 measurement depends on the patient type. For an adult patient, you can choose a finger SpO2 sensor; for an infant patient, you can choose a hand or toe sensor. Refer to the following procedure.

1. Power on the monitor.
2. Attach the sensor to the proper site on the patient.
3. Plug the connector of the sensor extension cable into the SpO2 connector on monitor.

Finger Sensor Placement

You can easily place the finger sensor as shown below.
NOTE

- Place the SpO2 sensor cable at the backside of the patient hand. Make sure the fingernail is just opposite to the light emitted from the sensor.

Neonate Sensor Placement

Neonate SpO2 sensor consists of a Y-shape SpO2 sensor and its sheath. Insert the LED and PD ends of the Y-shape SpO2 sensor respectively into the upper and lower grooves on the sheath (Figure 11-3). The Figure 11-4 shows us the neonate SpO2 sensor after insertion.

Wind the SpO2 sensor around a hand or foot of a neonate patient. Hold the sensor, pull the belt and fit one of its sides with “V” edge into the “V” groove on the corresponding side of the sheath. Appropriately elongate the belt to about 20mm, and fit the “V” edge of the other side of the belt into the “V” groove of the other side of the sheath. Then, loosen the belt. After the “V” edges of the two sides of the belt fit well into the “V” grooves on the two sides of the sheath, put the belt into the first lock bar to fasten the belt. See Figure 11-5. If the belt is too long, you may put it into the second lock bar. You must position the SpO2 sensor in this way so as to make the photoelectric component face the correct position. Besides, note not to elongate the belt too much, which may lead to inaccurate measurement and block the blood circulation severely.
NOTE

- If the sensor cannot be positioned accurately to the part to be measured, it may result in inaccurate SpO2 reading, or the SpO2 even cannot be measured because no pulse is detected. In this case, you must position the sensor again.
- The excessive patient movement may result in inaccurate reading. In this situation, you must keep the patient quiet or change the measured position to reduce the adverse influence of excessive movement.

WARNING

- In the process of extended and continuous monitoring, you should check the peripheral circulation and the skin every 2 hours. If any unfavorable change takes place, you should change the measured position in time.
- In the process of extended and continuous monitoring, you should periodically check the position of the sensor. In case that the position of the sensor moves during monitoring, the measurement accuracy may be affected.
11.2.4 Measurement Limitations

If the accuracy of any measurement does not seem reasonable, first check the patient’s vital signs by an alternate method. Then check the instrument for proper function. Inaccurate measurements may be caused by:

- Improper SpO2 sensor;
- High-frequency electrical noise, including noise created by the host system, or noise from external sources, such as electrosurgical apparatus connected to the system;
- Oximeters and oximetry sensors used during magnetic resonance imaging (MRI) scanning. Induced current could potentially cause burns;
- Intravascular dye injections;
- Excessive patient motion;
- Excessive ambient light;
- Improper sensor installation or incorrect sensor placement on the patient
- Sensor temperature (optimal temperature is between 28°C and 40°C);
- The sensor is placed on a limb that is attached to a blood pressure cuff, arterial catheter, or intravascular line;
- Concentration of dysfunctional hemoglobin, such as carboxyhemoglobin and methemoglobin;
- SpO2 too low;
- Low circular perfusion of the applied part;
- Shock, anemia, low temperature and application of vasomotor all reduce the arterial blood flow and may affect the pulse oximetry measurement.

The absorption of oxyhemoglobin (HbO₂) and deoxyhemoglobin to the light of special wavelength may also affect SpO₂ measurement. If there exist other substances (like carbon hemoglobin, methemoglobin, methylene blue and indigo carmine) absorbing the light of the same wavelength, they may result in false or low SpO₂ reading.
11.2.5 SpO2 Setup Menu

Selecting the SpO2 label in the parameter window opens the following menu.

Figure 11-6 SpO2 Setup Menu

You can perform the following settings in this menu.

- **ALM**
 - SpO2 alarm on/off status
 - ON: When a SpO2 alarm occurs, the monitor gives alarm indications and stores the alarm;
 - OFF: When a SpO2 alarm occurs, the monitor neither gives alarm indications nor stores the alarm;
 - When OFF is selected, the icon is displayed on the right of the SpO2 label.

- **ALM LEV**
 - Alarm level
 - Options: HIGH and MED.

- **ALM REC**
 - Alarm recording
 - ON: When a SpO2 alarm occurs, the monitor enables the recording;
 - OFF: When a SpO2 alarm occurs, the monitor does not enable the recording.

- **SPO2 ALM HI**
 - SpO2 upper alarm limit

- **SPO2 ALM LO**
 - SpO2 lower alarm limit

- **PR ALM HI**
 - PR upper alarm limit

- **PR ALM LO**
 - PR lower alarm limit
SpO2 and PR alarm limits:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO2</td>
<td>(lower limit+1) ~100</td>
<td>0~(upper limit-1)</td>
<td>1</td>
</tr>
<tr>
<td>PR</td>
<td>(lower limit+2) ~254</td>
<td>0~(upper limit-2)</td>
<td>1</td>
</tr>
</tbody>
</table>

The SpO2 and PR alarm limits in factory configuration:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patient type</th>
<th>Upper limit</th>
<th>Lower limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO2</td>
<td>Adult</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Pediatric</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Neonate</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>PR</td>
<td>Adult</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Pediatric</td>
<td>160</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Neonate</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

⚠️ WARNING

- Setting the SpO2 upper alarm limit to 100% will disable the upper alarm limit.
 High oxygen levels may predispose a premature infant to retrolental fibroplasia. Therefore, the upper alarm limit for oxygen saturation must be carefully selected in accordance with the commonly accepted clinical practices.

- SWEEP Waveform speed
 Options: 12.5 and 25.0 mm/s.

- PR SOUND Pulse volume
 Range: 0 – 10. 0 indicates the volume is closed and 10 indicates the maximum volume.

- SENSITIVE Sensitivity of SpO2 calculation
 Options: HIGH, MED and LOW.
 When HIGH is selected, the monitor gives quick response to the change of the oxygen saturation but the measurement accuracy might be compromised.
 When LOW is selected, the monitor gives slow response to the change of the oxygen saturation but the accuracy is relatively high.
11.3 Nellcor SpO₂ Module

NOTE

This section is only applicable to the monitor equipped with a Nellcor SpO₂ module.

11.3.1 Principles of Operation

Bone, tissue, pigmentation, and venous vessels normally absorb a constant amount of light over time. The arteriolar bed normally pulsates and absorbs variable amounts of light during the pulsations. The Nellcor SpO₂ module uses pulse oximetry to measure functional oxygen saturation in the blood. Pulse oximetry works by applying a sensor to a pulsating arteriolar vascular bed, such as a finger or toe. The sensor contains a dual light source and a photodetector. The ratio of light absorbed is translated into a measurement of functional oxygen saturation (SpO₂).

Oximetry Overview

Pulse oximetry is based on two principles:

1. Oxyhemoglobin and deoxyhemoglobin differ in their absorption of red and infrared light (i.e., spectrophotometry).
2. The volume of arterial blood in tissue (and hence, light absorption by that blood) changes during the pulse (i.e., plethysmography).

A monitor determines SpO₂ by passing red and infrared light into an arteriolar bed and measuring changes in light absorption during the pulsatile cycle. Red and infrared low-voltage light-emitting diodes (LEDs) in the oximetry sensor serve as light sources; a photodiode serves as the photo detector.

Because oxyhemoglobin and deoxyhemoglobin differ in light absorption, the amount of red and infrared light absorbed by blood is related to hemoglobin oxygen saturation. To identify the oxygen saturation of arterial hemoglobin, the monitor uses the pulsatile nature of arterial flow. During systole, a new pulse of arterial blood enters the vascular bed, and blood volume and light absorption increase. During diastole, blood volume and light absorption reach their lowest point.
The monitor bases its SpO₂ measurements on the difference between maximum and minimum absorption (i.e., measurements at systole and diastole). By doing so, it focuses on light absorption by pulsatile arterial blood, eliminating the effects of nonpulsatile absorbers such as tissue, bone, and venous blood.

- **Automatic Calibration**

Because light absorption by hemoglobin is wavelength dependent and because the mean wavelength of LEDs varies, a monitor must know the mean wavelength of the sensor’s red LED to accurately measure SpO₂. During manufacturing, the mean wavelength of the red LED is encoded in a resistor in the sensor. During monitoring, the monitor reads this resistor and selects coefficients that are appropriate for the wavelength of that sensor’s red LED; these coefficients are then used to determine SpO₂.

This resistor is read when the monitor is turned on, periodically thereafter, and each time a new sensor is connected. Additionally, to compensate for differences in tissue thickness, the intensity of the sensor’s LEDs is adjusted automatically.

- **Functional versus Fractional Saturation**

This monitor measures functional saturation — oxygenated hemoglobin expressed as a percentage of the hemoglobin that can transport oxygen. It does not detect significant amounts of dysfunctional hemoglobin, such as carboxyhemoglobin or methemoglobin. In contrast, some instruments report fractional saturation — oxygenated hemoglobin expressed as a percentage of all measured hemoglobin, including measured dysfunctional hemoglobins. To compare functional saturation measurements to those from an instrument that measures fractional saturation, fractional measurements must be converted as follows:

\[
\text{Functional saturation} = \frac{\text{Fractional saturation}}{100 - (\%\text{carboxyhemoglobin} + \%\text{methemoglobin})} \times 100
\]

- **Measured versus Calculated Saturation**

When saturation is calculated from a blood gas partial pressure of oxygen (PO₂), the calculated value may differ from the SpO₂ measurement of a monitor. This usually occurs because the calculated saturation was not appropriately corrected for the effects of variables that shift the relationship between PO₂ and saturation (Figure 11-7): pH, temperature, the partial pressure of carbon dioxide (PCO₂), 2,3-DPG, and fetal hemoglobin.
Figure 11-7 Oxyhemoglobin Dissociation Curve
11.3.2 Precautions

⚠️ WARNING

- Pulse oximeter can overestimate the SpO2 value in the presence of Hb-CO, Met-Hb or dye dilution chemicals.
- ES (Electrosurgery) equipment wire and SpO2 cable must not be tangled up. Carefully route patient cabling to reduce the possibility of patient entanglement or strangulation.
- Do not use this instrument and the sensors during magnetic resonance imaging (MRI). Induced current could potentially cause burns. The monitor may affect the MRI image, and the MRI unit may affect the accuracy of the oximetry measurements.
- Do not put the SpO2 sensor on the limb with arterial catheter or venous syringe.
- Do not use the supplied sterile SpO2 sensors if the packaging or the sensor is damaged. Return them to the distributor or manufacturer.
- Do not perform SpO2 monitoring and NIBP measurements on the same arm simultaneously. Obstruction of blood flow during NIBP measurements may adversely affect the reading of the SpO2 value.
- Before performing the testing, check the sensor cable. After unplugging the SpO2 sensor cable from the socket, the system shall display the prompt information "SPO2 SENSOR OFF" and give the audible alarm.
- Prolonged continuous monitoring may increase the risk of undesirable changes in skin characteristics, such as irritation, reddening, blistering or burns. Inspect the sensor site every two hours and move the sensor if the skin quality changes. Change the application site every four hours. For neonates or patients with poor peripheral blood circulation or sensitive skin, inspect the sensor site more frequently.

NOTE

- Place the SpO2 sensor cable at the backside of the patient hand. Make sure the fingernail is just opposite to the light emitted from the sensor.
- SpO2 waveform is not proportional to the pulse volume.
11.3.3 Monitoring Procedure

Follow the procedure as below:

1. Power on the monitor.
2. Attach the sensor to the proper site on the patient.
3. Plug the connector of the sensor extension cable into the SpO2 connector on monitor.

The process of SpO2 plethysmogram measurement is generally the same. But the SpO2 sensor selection and placement depend on the patient type. When choosing a site for a sensor, refer to the directions for that sensor.

11.3.4 Measurement Limitations

If the accuracy of any measurement does not seem reasonable, first check the patient’s vital signs by an alternate method. Then check the instrument for proper function.

Inaccurate measurements may be caused by:

- Incorrect sensor application or use;
- Placement of a sensor on the same extremity with a blood pressure cuff, arterial catheter, or intravascular line;
- Exposure to excessive illumination, such as surgical lamps (especially ones with a xenon light source), bilirubin lamps, fluorescent lights, infrared heating lamps, or direct sunlight (exposure to excessive illumination can be corrected by covering the sensor with a dark material);
- Excessive patient motion;
- Venous pulsations;
- Intravascular dyes such as indocyanine green or methylene blue;
- Defibrillation;

Other physiological conditions or medical procedures that may interfere with the monitor’s measurements include significant levels of dysfunctional hemoglobin, low perfusion, and dark pigment.

Loss of pulse signal can occur in the following situations:

- The sensor is too tight;
- A blood pressure cuff is inflated on the same extremity as the one with a SpO2 sensor attached;
- There is arterial occlusion proximal to the sensor.

Select an appropriate sensor, apply it as directed, and observe all warnings and cautions presented in the directions for use accompanying the sensor. Clean and remove any substances such as nail polish from the application site. Periodically check to ensure that the sensor remains properly positioned on the patient.
If patient movement presents a problem, try one or more of the following remedies to correct the problem.

- Verify that the sensor is properly and securely applied.
- Move the sensor to a less active site.
- Use an adhesive sensor that tolerates some patient motion.
- Use a new sensor with fresh adhesive backing.

If poor perfusion affects performance, consider using the Oxisensor R-15 sensor; it obtains measurements from the nasal septal anterior ethmoid artery, an artery supplied by the internal carotid. This sensor may obtain measurements when peripheral perfusion is relatively poor. For low peripheral perfusion, consider using the Nellcor RS-10 sensor, which is applied to the forehead or temple. These are sites that may be spared during peripheral vasoconstriction.

11.3.5 SpO2 Setup Menu

Selecting the SPO2 label in the parameter window opens the following menu.

![SpO2 Setup Menu](image)

Figure 11-8 SpO2 Setup Menu

You can perform the following settings in this menu.

- **ALM**

 SpO2 alarm on/off status
 - ON: When a SpO2 alarm occurs, the monitor gives alarm indications and stores the alarm;
 - OFF: When a SpO2 alarm occurs, the monitor neither gives alarm indications nor stores the alarm;

 When OFF is selected, the icon is displayed on the right of the SPO2 label.
- **ALM LEV**
 - Alarm level
 - Options: HIGH and MED.

- **ALM REC**
 - Alarm recording
 - ON: When a SpO2 alarm occurs, the monitor enables the recording;
 - OFF: When a SpO2 alarm occurs, the monitor does not enable the recording.

- **SPO2 ALM HI**
 - SpO2 upper alarm limit

- **SPO2 ALM LOW**
 - SpO2 lower alarm limit

- **PR ALM HI**
 - PR upper alarm limit

- **PR ALM LO**
 - PR lower alarm limit

SpO2 and PR alarm limits:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO2</td>
<td>(lower limit+1) ~100</td>
<td>0~(upper limit-1)</td>
<td>1</td>
</tr>
<tr>
<td>PR</td>
<td>(lower limit+2) ~254</td>
<td>0~(upper limit-2)</td>
<td>1</td>
</tr>
</tbody>
</table>

The SpO2 and PR alarm limits in factory configuration:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patient type</th>
<th>Upper limit</th>
<th>Lower limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO2</td>
<td>Adult</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Pediatric</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Neonate</td>
<td>95</td>
<td>80</td>
</tr>
<tr>
<td>PR</td>
<td>Adult</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Pediatric</td>
<td>160</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Neonate</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

⚠️ **WARNING**

- Setting the SpO2 upper alarm limit to 100% will disable the upper alarm limit. High oxygen levels may predispose a premature infant to retrolental fibroplasia. Therefore, the upper alarm limit for oxygen saturation must be carefully selected in accordance with the commonly accepted clinical practices.
- **SWEEP**
 Waveform speed
 Options: 12.5 and 25.0 mm/s.

- **PR SOUND**
 Pulse volume
 Range: 0 – 10. 0 indicates the volume is closed and 10 indicates the maximum volume.

- **AVG TIME**
 Average time
 Determines the average SpO2 calculation time.
 Options: 4S, 8S and 16S.

- **NIBP SIMUL**
 ON: When measuring NIBP and SpO2 at the same side, the SpO2 alarm status remains unchanged until the NIBP measurement is finished;
 OFF: The function of NIBP SIMUL is disabled.

- **CONFIG >>**
 You can select this option to access the SPO2 CONFIG menu, in which you may select FACTORY CONFIG or USER CONFIG. After finishing your selection and exiting the menu, the system pops up a dialog box asking for your confirmation.

11.3.6 Accessories

If your monitor is equipped with a Nellcor SpO2 module, use only Nellcor oximetry sensors for SpO2 measurements. Other sensors may cause improper pulse oximeter performance. Before use, carefully read the directions for the sensor. When selecting a sensor, consider the patient’s weight and motion, the adequacy of perfusion, the available sensor sites, and the required disinfection.

Biocompatibility testing has been conducted on Nellcor sensors in compliance with ISO 10993-1, Biological Evaluation of Medical Devices, Part 1: Evaluation and Testing. The sensors have passed the recommended biocompatibility testing and are therefore in compliance with ISO 10993-1.

Before attempting to clean a SpO2 sensor, read the directions for use enclosed with the sensor. Each sensor model has cleaning instructions specific to that sensor.

⚠️ **WARNING**

- Incorrect use of an oximetry sensor may cause damage to the patient’s muscle.
 Verify the sensor site carefully according to the directions for use.
11.3.7 Nellcor Information

Nellcor Patents

This device is covered under one or more the following U.S. Patents: 4,802,486; 4,869,254; 4,928,692; 4,934,372; 5,078,136; 5,351,685; 5,485,847; 5,533,507; 5,577,500; 5,803,910; 5,853,364; 5,865,736; 6,083,172; 6,463,310; 6,591,123; 6,708,049; Re.35,122 and international equivalents. U.S.A and international patents pending.

No Implied License

Possession or purchase of this device does not convey any express or implied license to use the device with replacement parts which would, alone, or in combination with this device, fall within the scope of one or more of the patents relating to this device.
12 NIBP Monitoring

12.1 Overview

The Non-invasive Blood Pressure (NIBP) module measures blood pressure using the oscillometric method. This monitor can be applied to adult, pediatric, and neonatal patients. Three modes of measurement are available: manual, automatic and continuous.

- Manual: Pressing the NIBP key on the control panel starts a NIBP measurement.
- Auto: The NIBP measurement is conducted automatically at a preset interval.
- Continuous: The NIBP measurement is performed as many times as possible in five minutes.

NOTE

Blood pressure measurements determined with this device are equivalent to those obtained by a trained observer using the cuff/stethoscope auscultatory method, within the limits prescribed by the American National Standard, Manual, electronic, or automated sphygmomanometers.

The NIBP measurement does not produce any waveform. Instead, it displays the measurement result in the NIBP parameter window as shown below.

![NIBP Parameter Window](image)

Figure 12-1 NIBP Parameter Window

1. NIBP label: Selecting this label to access the NIBP SETUP menu.
2. Time of last measurement.
3. NIBP unit: mmHg or kPa.
4. Prompt information area: Shows the NIBP measurement mode and other information.
5. Systolic pressure value (NS)
6. Mean pressure value (NM)
7. Diastolic pressure value (ND)

If a set of measured results appears in grey, it indicates this measurement is performed at least 1 hour ago.

12.2 Monitoring Procedure

WARNING

- You must not perform NIBP measurements on patients with sickle-cell disease or under any condition in which the skin is damaged or expected to be damaged.
- For a thrombasthemia patient, it is important to determine whether measurement of the blood pressure shall be done automatically.
- This monitor is suitable for use in the presence of electrosurgery.
- Ensure that the setting is correctly made when performing measurements on children. Incorrect patient type setting may cause a danger to the patient because adult blood pressure level is higher than children.

To perform NIBP measurement on a patient, follow the procedure as below

1. Power on the monitor.
2. Check the patient information area on the screen. If the patient type is incorrect, select a correct patient type in PATIENT SETUP menu.
3. Plug the air hose in the NIBP cuff connector of the monitor.
4. Apply a cuff of proper size to the upper arm or the leg of the patient.
5. Connect the cuff with the air hose.
6. Press the NIBP key on the control panel to start the NIBP measurement.
12.2.1 Cuff Selection and Placement

1. Identify the patient limb circumference.
2. Select appropriate cuff; limb circumference is identified on each cuff.
3. Verify the cuff is completely deflated; place cuff around extremity being used and make sure the marking φ matches artery location.
4. Verify the cuff is not wrapped too tightly around the limb. Excessive tightness may cause discoloration or ischemia of the extremities.

5. Make sure that the cuff edge falls within the range of the <-> mark. If it does not, use a larger or smaller cuff that will fit better.
6. The limb chosen for taking the measurement should be placed at the same level as the patient's heart. If this is not possible, use the following method to correct the measurement result:
 - If the cuff is placed higher than the heart level, add 0.75 mmHg (0.10 kPa) for each centimeter of difference.
 - If it is placed lower than the heart level, deduct 0.75 mmHg (0.10 kPa) for each centimeter of difference.

⚠️ WARNING

- The width of the cuff should be either 40% of the limb circumference (50% for neonates) or 2/3 of the upper arm length. The inflatable part of the cuff should be long enough to circle 50-80% of the limb. The wrong size cuff can cause erroneous readings. If the cuff size is in question, use a larger cuff.
- Do not apply the cuff to a limb that has an intravenous infusion or catheter in place. This could cause tissue damage around the catheter when infusion is slowed or blocked during cuff inflation.
- Make sure the air tubing connecting the blood pressure monitor is not blocked, twisted, or tangled.
12.2.2 Operation Guides

1. To start a manual NIBP measurement
 - Access the NIBP SETUP menu and select MANUAL from the INTERVAL option; then, press the NIBP key on the control panel to start a manual NIBP measurement; or
 - During the interval between two auto NIBP measurements, press the NIBP key on the control panel to start a manual NIBP measurement.

2. To start auto NIBP measurement
 Access the NIBP SETUP menu and select a time (e.g. 5MIN) from the INTERVAL options; press the NIBP key on the control panel to start the auto NIBP measurement. When this measurement finishes, the system will perform the NIBP measurement automatically as per the preset interval.

⚠️ WARNING

- Auto non-invasive blood pressure measurements performed in long intervals may incur ischemia and neuropathy in the limb wearing the cuff. When monitoring a patient, examine the extremities of the limb frequently for normal color, warmth and sensitivity. If any abnormality is observed, change the position of the cuff on the patient or stop the blood pressure measurements immediately.

3. To start a continuous NIBP measurement
 Selecting CONTINUAL in NIBP SETUP menu starts a continuous NIBP measurement. The monitor continues measuring NIBP for five minutes.

4. To stop a NIBP measurement
 During an auto, manual or continuous measurement, pressing the NIBP key on the control panel stops the ongoing measurement.

NOTE

- If you are in doubt about the accuracy of any reading(s), check the patient's vital signs by an alternative method before checking the function of the monitor.
12.3 Measurement Limitations

Non-invasive blood pressure measurement uses the oscillometric method of measurement. The monitor detects the regular arterial pressure pulse. In some circumstances when the patient’s condition makes it difficult to detect this pulse, the measurement becomes unreliable and the measurement time increases. You should be aware that the following conditions could interfere with the measurement, make the measurement unreliable, prolong the measurement, or even make a measurement impossible.

- Patient Movement
 E.g. The patient is moving, shivering, or having convulsions.

- Cardiac Arrhythmia’s
 E.g. The patient's cardiac arrhythmia has caused an irregular heartbeat.

- Heart-lung Machine
 E.g. Measurements will be impossible if the patient is connected to a heart-lung machine.

- Pressure Changes
 E.g. The patient's blood pressure is changing rapidly over the period of time during which the arterial pressure pulses are being analyzed to obtain the measurement.

- Severe Shock
 E.g. If the patient is in severe shock or hypothermia, reduced blood flow to the peripheries will cause reduced pulsation of the arteries.

- Heart Rate Extremes
 The monitor is unable to perform pressure measurements at a heart rate of less than 40 bpm and greater than 240 bpm.
12.4 NIBP Setup Menu

Selecting the NIBP label in the parameter area opens the following menu.

![NIBP Setup Menu](image)

You can perform the following settings in this menu.

- **ALM**
 - NIBP alarm on/off status
 - ON: When a NIBP alarm occurs, the monitor gives alarm indications and stores the alarm;
 - OFF: When a NIBP alarm occurs, the monitor neither gives alarm indications nor stores the alarm;
 - When OFF is selected, the 🔄 icon is displayed on the right of the NIBP label.

- **ALM LEV**
 - Alarm level
 - Options: HIGH and MED.

- **ALM REC**
 - Alarm recording
 - ON: When an NIBP alarm occurs, the monitor enables the recording;
 - OFF: When a NIBP alarm occurs, the monitor does not enable the recording.
- **SYS ALM HI** Determines the upper limit of the systolic pressure.
- **SYS ALM LO** Determines the lower limit of the systolic pressure.
- **MEAN ALM HI** Determines the upper limit of the mean pressure.
- **MEAN ALM LO** Determines the lower limit of the mean pressure.
- **DIA ALM HI** Determines the upper limit of the diastolic pressure.
- **DIA ALM LO** Determines the lower limit of the diastolic pressure.

If a measured pressure crosses a preset upper or lower alarm limit, an alarm will be triggered. The NIBP alarm limits are as follows:

<table>
<thead>
<tr>
<th>Patient type</th>
<th>Adult</th>
<th>Pediatric</th>
<th>Neonate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper Limit</td>
<td>Lower Limit</td>
<td>Upper Limit</td>
</tr>
<tr>
<td>Systolic pressure</td>
<td>(lower limit+2)~270</td>
<td>40~(upper limit-2)</td>
<td>(lower limit+2)~200</td>
</tr>
<tr>
<td>Mean pressure</td>
<td>(lower limit+2)~230</td>
<td>20~(upper limit-2)</td>
<td>(lower limit+2)~165</td>
</tr>
<tr>
<td>Diastolic pressure</td>
<td>(lower limit+2)~210</td>
<td>10~(upper limit-2)</td>
<td>(lower limit+2)~150</td>
</tr>
</tbody>
</table>

The alarm limits in factory configuration (Unit: mmHg):

<table>
<thead>
<tr>
<th>Patient type</th>
<th>Adult</th>
<th>Pediatric</th>
<th>Neonate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sys alarm high</td>
<td>160</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td>Sys alarm low</td>
<td>90</td>
<td>70</td>
<td>40</td>
</tr>
<tr>
<td>Mean alarm high</td>
<td>110</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>Mean alarm low</td>
<td>60</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Dia alarm high</td>
<td>90</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>Dia alarm low</td>
<td>50</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>
DISPLAY WAY

1 GROUP: The NIBP parameter area only displays a group of NIBP values obtained in the latest measurement.

GROUPS: Multiple groups of measurement values are displayed at the lower left corner of the screen as shown below.

<table>
<thead>
<tr>
<th>NS</th>
<th>NM</th>
<th>ND</th>
<th>PR</th>
<th>DATE</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>84</td>
<td>70</td>
<td>68</td>
<td>2006-6-12</td>
<td>16:06:00</td>
</tr>
<tr>
<td>108</td>
<td>80</td>
<td>70</td>
<td>67</td>
<td>2006-6-12</td>
<td>16:11:00</td>
</tr>
<tr>
<td>108</td>
<td>80</td>
<td>70</td>
<td>72</td>
<td>2006-6-12</td>
<td>16:16:00</td>
</tr>
</tbody>
</table>

UNIT

Options: mmHg, kPa;

INTERVAL

Select MANUAL to set the monitor to manual NIBP measurement mode, or select from the time options to determine the interval between automatic measurements.

Optional intervals: 1, 2, 3, 4, 5, 10, 15, 30, 60, 90, 120, 180, 240, and 480MIN.

RESET

Select this option to restore the initial settings of the pressure pump. If the monitor fails to give a visual indication when the pressure pump is working improperly, selecting this option activates a self-test procedure, and restores the monitor to normal performance.

CONTINUAL

Select this option to start a continuous measurement for five minutes.

CONFIG >>

You can select this option to access the NIBP CONFIG menu, in which you may select FACTORY CONFIG or USER CONFIG. After finishing your selection and exiting the menu, the system pops up a dialog box asking for your confirmation.
12.4.1 Calibration

If you select the CALIBRATE option, the monitor starts the NIBP calibration and the CALIBRATE option changes to STOP CAL. Selecting the option again stops the calibration.

Calibrate the cuff pressure reading with a calibrated reference manometer (or mercury manometer) with accuracy higher than 1mmHg. To perform the calibration, follow the procedure shown below:

1. Remove the blood pressure cuff from the monitor and replace it with a rigid metal container or vessel with a capacity of 500 ml ± 5%.
2. Connect a calibrated reference manometer (with an error less than 1mmHg) and a ball pump using “T” connectors as shown below.
3. Select the CALIBRATE option.
4. Inflate the metal container using the ball pump until the reference manometer reads 0, then 50, and finally 200 mmHg.
5. The difference between the indicated pressure of the reference manometer and the indicated pressure of the monitor will not exceed 3 mmHg. Contact our Customer Service if these values are not met.

![Figure 12-3 NIBP Calibration](image)

NOTE

- The calibration of the NIBP measurement should be performed every two years or performed according to the Hospital Procedure.
12.4.2 Testing for Air Leakage

The PNEUMATIC option is used to test air leakage. When the NIBP cuff is connected, select this option to start the NIBP inflation and test whether the air leakage occurs in the airway. If the test is passed, no prompt information will be displayed; if the test is not passed, corresponding prompt information will be displayed in the NIBP parameter window.

To test air leakage, use the following procedure:

1. Set PAT TYPE to ADU.
2. Connect a rigid metal container or vessel with a capacity of 500 ml ± 5% to the NIBP cuff connector of the monitor.

 ![Figure 12-4 NIBP Leakage Test](image)

3. Select the PNEUMATIC option, and the information “Pneum testing…” is displayed at the lower left corner of the NIBP parameter window.
4. After approximately 20 seconds, the monitor will automatically open the deflate valve, ending the test.
5. If no information appears on the bottom of the NIBP parameter area, it indicates the airway is in good condition and an air leak does not exist. However if the information “PNEUMATIC LEAK” appears, it indicates the airway may have an air leak. In this case, check for loose connections. After confirming all connections are secure, perform the test again.

 If there is still a failure, contact our Customer Service.

NOTE

- Set PAT TYPE to ADU in the PATIENT SETUP menu before leakage test.
- The pneumatic test, other than being specified in the EN 1060-1 standard, is to be used to simply determine whether there are air leaks in the NIBP airway.
12.5 Maintenance and Cleaning

⚠️ WARNING ⚠️

- Do not press the rubber tube on the cuff with excessive strength.
- When a reusable cuff is not connected to the monitor or is being cleaned, always cover the rubber tube with a lid. Avoid splashing liquid into the rubber tube or the monitor inadvertently.

Reusable Blood Pressure Cuffs

The cuff is not suitable for dry-cleaned. Instead, it should be machine or hand washed. Hand washing, may prolong the service life of the cuff. Before washing, remove the latex rubber bladder. Allow the cuff to dry thoroughly after washing, and then reinsert the rubber bladder. The cuff can be disinfected by means of conventional autoclaving, gas, or radiation disinfection in hot air ovens, or sterilized by immersion in decontamination solutions. Remember to remove the rubber bladder if you use this method.

![Figure 12-5 Replacing the Rubber Bladder](image)

To replace the rubber bladder in the cuff:

1. Place the bladder on top of the cuff so the rubber tubes line up with the large opening on the long side of the cuff.
2. Roll the bladder lengthwise and insert it into the opening on the long side of the cuff.
3. Hold the tubes and the cuff and shake the complete cuff until the bladder is in position.
4. Thread the rubber tubes from inside the cuff, and out through the small hole under the internal flap.
CAUTION

- Some disinfectants may cause skin irritation. Please rinse cuff thoroughly with water to remove any residual disinfectants. Using dark colored disinfectants may stain the cuffs. Test a single cuff to ensure that no damage will occur.

Disposable Blood Pressure Cuffs

Disposable cuffs are intended for single patient use only. Do not sterilize or use autoclave sterilization for disposable cuffs.

NOTE

- Disposable blood pressure cuffs must be recycled or disposed of properly.
13 TEMP Monitoring

13.1 Overview

The monitor is able to use two temperature probes simultaneously, to obtain two temperature values and the difference between them. The measurement values are displayed in the TEMP parameter window as shown below.

1. TEMP label: Selecting this label opens the TEMP SETUP menu.
2. Temperature unit: °C or °F.
3. T1: Temperature channel 1. Displays the temperature measured at temperature channel 1.
4. T2: Temperature channel 2. Displays the temperature measured at temperature channel 2.
5. TD: Temperature difference, namely the difference between temperature 1 and temperature 2.
13.2 Measurement Procedure

To measure the temperature of a patient,

1. If a disposable temperature probe is used, plug the temperature probe cable in the temperature probe connector on the side panel of the monitor, and then connect the temperature probe with the cable; if a reusable temperature probe is used, connect the temperature probe with the temperature probe connector directly.
2. Attach the temperature probe to the patient properly.
3. Power on the monitor.

NOTE

- Disposable temperature probes are for single patient use only.
- The self-test of the temperature measurement is performed once per hour during monitoring. This self-test lasts about 2 seconds and does not affect the normal measurement of temperature.

WARNING

- Verify probe cable fault detection before beginning monitoring. Unplug the temperature probe cable of channel 1 or channel 2 from the connector on the monitor. The monitor will display the prompt information “T1 SENSOR OFF” or “T2 SENSOR OFF” and an audible alarm is activated. The other channel is the same.
- Be careful to avoid damaging the temperature probe and cable. When the temperature probe and cable are not in use, shape them into a loose round. If the cable is tangled too tightly or over-bent, mechanical damage may occur.
- The calibration of the temperature measurement function is required every two years (or as dictated by your Hospital Procedures Policy). If you need to calibrate the temperature measurement function, contact our Customer Service.
13.3 TEMP Setup Menu

Selecting the TEMP label in the parameter window opens the following menu.

You can perform the following settings in this menu.

- **ALM**
 - Temperature alarm on/off status
 - ON: When a temperature alarm occurs, the monitor gives alarm indications and stores the alarm;
 - OFF: When a temperature alarm occurs, the monitor neither gives alarm indications nor stores the alarm;
 - When OFF is selected, the icon is displayed on the right of the TEMP label.

- **ALM LEV**
 - Alarm level
 - Options: HIGH, MED and LOW.

- **ALM REC**
 - Alarm recording
 - ON: When a TEMP alarm occurs, the monitor enables the recording;
 - OFF: When a TEMP alarm occurs, the monitor does not enable the recording.

- **T1 ALM HI**
 - Determines the upper alarm limit of temperature channel 1.

- **T1 ALM LO**
 - Determines the lower alarm limit of temperature channel 1.

- **T2 ALM HI**
 - Determines the upper alarm limit of temperature channel 2.

- **T2 ALM LO**
 - Determines the lower alarm limit of temperature channel 2.

- **TD ALM HI**
 - Determines the upper limit of the temperature difference between channel 1 and channel 2.

- **TEMP UNIT**
 - Options: °C and °F
You can select this option to access the TEMP CONFIG menu, in which you may select FACTORY CONFIG or USER CONFIG. After finishing your selection and exiting the menu, the system pops up a dialog box asking for your confirmation.

Temperature alarm limits:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 and T2</td>
<td>(lower limit+1) ~50</td>
<td>0–(upper limit-1)</td>
<td>0.1</td>
</tr>
<tr>
<td>TD</td>
<td>(lower limit+1) ~50</td>
<td>0–(upper limit-1)</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Temperature alarm limits in factory configuration:
- T1/T2 alarm high limit: 39°C
- T1/T2 alarm low limit: 36°C
- TD alarm limit: 2.0°C

13.4 Maintenance and Cleaning

⚠️ WARNING

- Before cleaning the monitor or the probe, make sure the equipment is turned off and disconnected from AC power.

Reusable Temperature Probes

- The temperature probe should not be heated to a temperature over 100°C (212°F). It is only able to bear the temperature between 80 and 100°C (176 to 212°F) for a short time.
- The probe must not be disinfected in steam.
- Only detergents containing alcohol can be used for disinfection.
- The rectal probes should be used, if possible, in conjunction with a protective rubber cover.
- To clean the probe, hold the tip with one hand and with the other hand rub the probe down in the direction of the connector using a moist lint-free cloth.

NOTE

- Disposable temperature probes must not be re-sterilized or reused.
- Disposable temperature probes must be recycled or disposed of properly.
14 IBP Monitoring

14.1 Overview

The monitor provides two channels to measure the invasive blood pressure (IBP, including diastolic, systolic and mean pressures), and displays two waveforms.

![IBP Waveform](image)

Figure 14-1 IBP Waveform

1. CH1 label: select the waveform of channel 1 to be displayed.
2. CH2 label: select the waveform of channel 2 to be displayed.

Options for CH1 and CH2: ART (Arterial Blood Pressure), PA (Pulmonary Arterial Pressure), CVP (Center Venous Pressure), RAP (Right Atrial Pressure), LAP (Left Atrial Pressure), ICP (Intracranial Pressure) and P1-P2 (Expand Pressure).

Besides, each waveform is followed by three scale lines, among which the upper and the lower ones are marked by scales on the left.

The parameter window locates to the right of the IBP waveforms as shown below.

![IBP Parameter Window](image)

Figure 14-2 IBP Parameter Window

1. IBP (1,2) label: This label allows you to access the IBP (1,2) SELECT menu.
2. Pressure unit: mmHg, kPa or cmH2O.
3. Parameter values of channel 1: Systolic pressure, mean pressure and diastolic pressure (from the left to the right).

4. Parameter values of channel 2: Systolic pressure, mean pressure and diastolic pressure (from the left to the right). When ART or ICP is selected for CH1 and CH2 respectively, the ICP and CPP values will be displayed, where CPP is equal to the mean pressure of ART minus ICP.

5. PR numeric

14.2 Precautions

⚠️ WARNING

- Use only the IBP transducer specified in this operation manual. Disposable IBP transducers or domes should not be reused.
- Parts and accessories used must meet the safety requirements of the medical electrical equipment standards.
- The need for the operator to avoid conductive connection to the applied part likely to degrade safety. (For example, by not contacting metal cocks, if used.)
- When the monitor is used with high frequency surgical equipment, do not allow the transducer and the cable contact the high frequency surgical equipment to prevent the patient from burning caused by leakage current.
- Verify transducer cable fault detection before beginning to monitor. Unplug the transducer cable from the IBP connector on the monitor. The screen will display the error message “IBP SENSOR OFF” and an audible alarm will be heard.

The transducer (except for the ICT/B transducer) specified in this operation manual is able to protect against electrical shock, especially the leakage current, and the interference of cardiac defibrillation. It can be used in surgical operation. During defibrillation, the pressure waveform might become temporarily distorted. However, the monitor returns to normal operation after the defibrillation, with the operation mode and the user configuration being unaffected.

NOTE

- Periodically calibrate the transducer according to the Hospital Regulation.
14.3 Monitoring Procedure

1. Plug the pressure cable into the IBP connector on the monitor and power on the monitor.
2. Prepare the pressure line and transducer by flushing the system with normal saline solution. Make sure the tubing and transducer system is free of air bubbles.

NOTE

- In case of any entrapped air in the pressure system, re-fill the system with normal saline.

3. Connect the catheter to the pressure line, making sure there is no air present in the catheter or pressure line.
4. Position the transducer so it is at the same level with the patient’s heart, approximately mid-axillary line.
5. Verify the correct label is selected.
6. Zero the transducer.

![IBP Monitoring Diagram](image_url)

Figure 14-3 IBP Monitoring
14.4 IBP Menu

Selecting the IBP (1,2) label in the parameter window opens the following menu.

![IBP (1,2) Select Menu](image)

Figure 14-4 IBP (1,2) Select Menu

14.4.1 IBP Setup Menu

The IBP SETUP in IBP (1,2) SELECT menu allows you to access the following menu.

![IBP (1,2) Setup Menu](image)

Figure 14-5 IBP (1,2) Setup Menu
You can perform the following settings in this menu.

- **ALM**
 - IBP alarm on/off status
 - ON: When a IBP alarm occurs, the monitor gives alarm indications and stores the alarm;
 - OFF: When a IBP alarm occurs, the monitor neither gives alarm indications nor stores the alarm;
 - When OFF is selected, the 🚨 icon is displayed on the right of the IBP (1,2) label.

- **ALM LEV**
 - Alarm level
 - Options: HIGH, MED and LOW.

- **AMP ADJUST**
 - Amplitude adjustment
 - This option allows you to adjust the waveform amplitude.
 - Options: MANUAL and AUTO.

1. **MANUAL**: If MANUAL is selected, you can select an IBP channel manually from the options, including ART, PA, CVP, RAP, LAP, ICP, P1 and P2, and then adjust the IBP scale in the SCALE ADJUST >> menu.

2. **AUTO**: If AUTO is selected, the waveform labels of IBP channels become P1 and P2 and the IBP scale is adjusted by the system automatically.

- **SWEEP**
 - Waveform speed
 - Options: 12.5 and 25.0 mm/s.

- **PR SOUND**
 - Pulse volume
 - Range: 0 - 10. 0 indicates the volume is closed and 10 indicates the maximum volume.

- **RESPONSE**
 - Options: HIGH, MED and LOW.
 - The corresponding averaging time is about 1 s, 8 s and 12 s respectively.

The IBP value displayed on the monitor screen is the average of data collected within a specific time. The shorter the averaging time is, the quicker the patient monitor responds to changes in the patient’s blood pressure. Contrarily, the longer the averaging time is, the slower the patient monitor responds to changes in the patient’s blood pressure, but the measurement accuracy will be improved. For critically ill patients, selecting shorter averaging time will help understanding the patient’s state.

- **IBP1 UNIT**
 - Options: mmHg, kPa and cmH2O.

- **IBP2 UNIT**
 - Options: mmHg, kPa and cmH2O.

- **ALM LIMIT SETUP >>**
 - This option allows you to access the following menu, whereby you can set the upper and lower alarm limits.
IBP alarm limits

<table>
<thead>
<tr>
<th>Pressure Label</th>
<th>Upper Limit (mmHg)</th>
<th>Lower Limit (mmHg)</th>
<th>Step (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART</td>
<td>(lower limit+2) ~300</td>
<td>0~(upper limit-2)</td>
<td>1</td>
</tr>
<tr>
<td>PA</td>
<td>(lower limit+2) ~120</td>
<td>-6~(upper limit-2)</td>
<td>1</td>
</tr>
<tr>
<td>CVP</td>
<td>(lower limit+2) ~40</td>
<td>-10~(upper limit-2)</td>
<td>1</td>
</tr>
<tr>
<td>RAP</td>
<td>(lower limit+2) ~40</td>
<td>-10~(upper limit-2)</td>
<td>1</td>
</tr>
<tr>
<td>LAP</td>
<td>(lower limit+2) ~40</td>
<td>-10~(upper limit-2)</td>
<td>1</td>
</tr>
<tr>
<td>ICP</td>
<td>(lower limit+2) ~40</td>
<td>-10~(upper limit-2)</td>
<td>1</td>
</tr>
<tr>
<td>P1</td>
<td>(lower limit+2) ~300</td>
<td>-50~(upper limit-2)</td>
<td>1</td>
</tr>
<tr>
<td>P2</td>
<td>(lower limit+2) ~300</td>
<td>-50~(upper limit-2)</td>
<td>1</td>
</tr>
</tbody>
</table>

The PR alarm limits are the same as those of the corresponding SpO2 module.

- **SCALE ADJUST >>** This option allows you to open the following menu and set the positions of the high, reference and low scales for the two waveforms.

IBP SCALE ADJUST

<table>
<thead>
<tr>
<th>CH1:ART</th>
<th>HI</th>
<th>LO</th>
<th>VAL</th>
<th>mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>mmHg</td>
</tr>
</tbody>
</table>

Adjust the value of the upper scale (the upper line).

EXIT

Figure 14-6 IBP Alarm Setup Menu

Figure 14-7 IBP Scale Adjust Menu
1. **HI:** Determines the high scale. The reference scale changes when the high scale is changed.
2. **LO:** Determines the low scale. The reference scale changes when the low scale is changed.
3. **VAL:** Determines the reference scale and position. The high and low scales remain unchanged when the reference scale is changed.

NOTE

- The high scale should not be smaller than the low scale; the low scale should not be larger than the high scale.
- The waveform amplitude changes when the high and low scales are adjusted.

EXPAND PRESSURE

Selecting this option opens the following menu. You can select the pressure to be measured by P1 and P2.

Options: SYS, MEAN, DIA (three pressures are all measured); MEAN (only the mean pressure is measured).

![IBP EXPAND PRESSURE](image)

CONFIG >>

You can select this option to access the IBP (1,2) CONFIG menu, in which you may select FACTORY CONFIG or USER CONFIG. After finishing your selection and exiting the menu, the system pops up a dialog box asking for your confirmation.
14.4.2 IBP Pressure Zero Menu

You can select IBP PRESSURE ZERO in IBP (1,2) SELECT menu to open the following menu.

<table>
<thead>
<tr>
<th>IBP PRESSURE ZERO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Being Prepared, press ZERO key!</td>
</tr>
<tr>
<td>CH1 ZERO 00:00:00</td>
</tr>
<tr>
<td>CH2 ZERO 00:00:00</td>
</tr>
<tr>
<td>Back to the upper menu.</td>
</tr>
<tr>
<td>EXIT</td>
</tr>
</tbody>
</table>

Figure 14-9 IBP Pressure Zero Menu

Pressure Transducer Zeroing Procedure

1. Disconnect the transducer from the patient.

2. Adjust the 3-way stopcock to close the channel leading to the patient. The transducer is open to the atmosphere through the stopcock.

3. Select CH1 ZERO or CH2 ZERO in IBP PRESSURE ZERO menu to start zeroing.

Figure 14-10 Pressure Transducer Zeroing
NOTE

- To ensure correct measurement, zero the transducer before it is used to zero the monitor.
- Position the transducer at the same level with the patient’s heart, approximately mid-axillary line.
- Perform the pressure zeroing before monitoring, and at intervals during monitoring (at least once per day). The zeroing should also be conducted once the transducer cable is disconnected and then connected.

Prompt Information Related to Zeroing

Take channel 1 as an example. The monitor may give the following prompt information after the pressure transducer zeroing has been finished.

- **CH1 SUCCESSFUL ZERO**
 The zeroing procedure is over. The transducer port opening to the atmosphere is to be closed and the port connecting to the patient opened.

- **CH1 SENSOR OFF, FAIL**
 Verify the transducer of channel 1 is connected to the monitor, and then perform zeroing again. If the monitor continues to give this prompt information, contact our Customer Service.

- **IN DEMO, FAIL**
 Make sure the monitor is not in DEMO mode, and perform pressure transducer zeroing again. If the monitor continues to give this prompt information, contact our Customer Service.

- **PRESSURE OVER RANGE, FAIL**
 Verify the 3-way stopcock is open to the atmosphere, and perform the pressure transducer zeroing again. If the prompt information is still displayed, change with a new transducer and contact our Customer Service.

- **PULSATILE PRESSURE, FAIL**
 Make sure the transducer is not connected to the patient and the stopcock is open to the atmosphere. Then, perform the pressure transducer zeroing once again. If the prompt is still displayed, contact our Customer Service.
14.5 Maintenance and Cleaning

⚠️ WARNING

- Before cleaning the transducer, make sure the transducer is disconnected from the monitor, or the monitor is powered off and disconnected from AC power.

Cleaning of IBP Transducer

After the IBP monitoring operation is completed, remove the tubing and the dome from the transducer and wipe the transducer diaphragm with water. To clean the transducer and the cable, wipe them using soap or the detergents listed below:

- Cetylcide
- Wavicide-01
- Wescodyne
- Cidex
- Lysol
- Vesphene

Do not immerse the connector in any liquid. After cleaning, dry the transducer thoroughly before storing. Slight discoloration or temporary increase of surface stickiness of the cable should not be considered abnormal. If it is necessary to remove the adhesive tape residue from the transducer cable, the double seal tape remover is recommended; use the remover with special caution to minimize the damage to the cable. Acetone, Alcohol, Ammonia and Chloroform, or other strong solvents are not recommended because they are harmful to the vinyl cabling if used for a long time.

NOTE

- The disposable transducers or domes must not be reused.
- To avoid contamination, the disposable transducers or domes must be reclaimed or disposed of properly.
Sterilization

- Chemical Solution Sterilization

After finishing the cleaning, select an effective sterilant for chemical solution sterilization of the operating room equipment. Buffered glutaraldehyde (e.g. Cidex or Hospisept) is recommended. Do not use quaternary cationic detergents such as zephiran chloride. If the whole unit is to be sterilized, immerse the transducer but not the electrical connector into the sterilant for the recommended sterilizing period. Ensure that the dome has been removed. Then rinse all transducer parts except the electrical connector with sterilized water or saline. The transducer must be thoroughly dried before storing.

- Gas Sterilization

For more complete asepsis, use gas sterilization. The transducer should be completely dry after cleaning. When ethylene oxide gas is used as the gas disinfectant, follow the operating instructions provided by the manufacturer of the gas disinfectant.

NOTE

- The disinfectant temperature must not exceed 70°C (158°F). Plastics in the pressure transducer may deform or melt above this temperature.
15 CO₂ Monitoring

15.1 Overview

The monitor is able to measure the CO₂ pressure of the patient airway, and displays the CO₂ waveform in the waveforms area of the monitor screen. The CO₂ parameter window shows the following parameters:

- End-tidal CO₂ concentration (EtCO₂)
- Inspired Minimum CO₂ (InsCO₂)
- Air Way Respiration Rate (AwRR)

![Waveform Name](image)

Figure 15-1 CO₂ Waveform and Parameters

1. **CO₂ label**: This option allows you to access the CO₂ SETUP menu.
2. **Pressure unit**: mmHg or kPa.
3. **EtCO₂**: The measured value of EtCO₂.
4. **InsCO₂**: The measured value of InsCO₂.
5. **AwRR**: The measured value of AwRR.

Adverse effects on stated performance may occur as a result of the following:

- Leaks or internal venting of sampled gas;
- Mechanical shock;
- Cyclic pressure up to 10 kPa (100 cmH₂O);
- Other sources of interference, if any.

NOTE

- CO₂ and CO₂ are used interchangeably in this chapter.
- The sidestream and microstream CO₂ module is equipped with automatic barometric pressure compensation.
15.2 Mindray DS CO₂ Module

NOTE
- This section is only applicable to a monitor equipped with a Mindray DS CO₂ module.

15.2.1 Principles of Operation

WARNING
- The CO₂ module should be protected against crash and vibration.
- This CO₂ module is applicable to neonate, pediatric as well as adult patients.
- Inaccurate measurement may occur when the monitor is operating in an environment of excessively high CO₂ content (>0.5%).

The monitor adopts sidestream CO₂ module. The measurement of this module is based on the feature that the CO₂ molecule absorbs infrared ray. The measurement procedure is as follows: send the CO₂ to a measurement chamber inside the module through the airway system, and then irradiate 4.26um infrared ray at one side of the chamber and use the sensor to measure the attenuation degree of the received infrared ray at the other side. Since the attenuation degree of the infrared ray is proportional to the concentration of CO₂, the CO₂ concentration is calculated. The measured CO₂ concentration is thereafter converted into the partial pressure under the same temperature and pressure, and then displayed.

The relation between the partial pressure and the CO₂ concentration is given below:

\[
\text{CO₂ partial pressure (mmHg)} = \frac{\text{CO₂ concentration (\%)} \times \text{P}_{\text{ambient}} \text{(ambient pressure, mmHg)}}{100}
\]

\[
\text{CO₂ partial pressure (kPa)} = \frac{\text{CO₂ partial pressure (mmHg)}}{7.5}
\]
15.2.2 Preparations for CO₂ Measurement

1. Plug the water trap into its receptacle before the measurement.
2. Open the CO₂ SETUP menu and set WORK MODE to MEASURE. The “CO₂ START UP” prompt information is displayed on the screen until the startup is finished.
3. After the module start-up, the “CO₂ WARM UP” prompt information is displayed on the screen. At this time, the module is in the Warming–up status.
4. After the module warm-up, the module enters the Ready-to-measure status.

When the monitor is powered on for the first time, the CO₂ module enters the STANDBY mode by default. To activate the CO₂ module, you must change the work mode to MEASURE. The work mode of the CO₂ module keeps unchanged when the monitor is restarted. For instance, if the monitor is power off when the CO₂ module is working in the MEASURE mode, the CO₂ module will automatically enter the MEASURE mode after the monitor is restarted. For details about WORK MODE, please refer to the section Other Setup in 15.2.3 CO₂.

![Figure 15-2 CO₂ Module Airway Connections](image)

The measure CO₂ concentration can be compensated in two ways:

- ATPD (Ambient Temperature and Pressure, Dry Gas);
- BTPS (Body temperature and pressure, Saturated);

ATPD means the CO₂ value is measured in ambient temperature and pressure and dry gas, while BTPS means the CO₂ is measured at a temperature of 37°C, a relative humidity of 95% and a 47mmHg (pH₂O) partial pressure of moisture.
The calculation formulas in the above two compensations are as follows:

ATPD: \[\text{PCO}_2 \ (\text{mmHg}) = \text{CO}_2 \ (\text{vol\%}) \times \frac{\text{Pamp}}{100} \]

BTPS: \[\text{PCO}_2 \ (\text{mmHg}) = \text{CO}_2 \ (\text{vol\%}) \times \frac{\text{Pamp} - 47}{100} \]

In the above formulas, PCO₂ refers to the CO₂ partial pressure, vol% is the percentage of the gas concentration, and Pamp is the ambient pressure in the unit of mmHg.

WARNING

- Do not use the accessory if the packaging or the internal accessory is damaged. Return it to the manufacturer.
- “CO₂ START UP” and “CO₂ WARM UP” displayed on the screen indicate that the sensor is starting up and warming up. During the warming up, the module can measure CO₂, but the measurement is not standard. After the above information disappears, the standard measurement can be performed.
- The sidestream sampling line is disposable. It should not be disinfected for reuse or cross-used by different patients.
- The water trap is used to collect water drops condensed in the sampling airway and prevent water drops from entering the module. When the collected water reaches to a certain amount, remove the water to avoid blocking the airway.
- In the long-term use, dust or other substances may lower the air permeability of the filter material in the water trap and may block the airway. In this situation, the water trap must be replaced.
15.2.3 CO₂ Setup Menu

Selecting the CO₂ label in the parameter window opens the following menu.

![CO₂ Setup Menu]

You can perform the following settings in this menu.

- **ALM**
 - Alarm on/off status
 - ON: When a CO₂ alarm occurs, the monitor gives alarm indications and stores the alarm;
 - OFF: When a CO₂ alarm occurs, the monitor neither gives alarm indications nor stores the alarm;
 - When OFF is selected, the 🟢 icon is displayed on the right of the CO₂ label.

- **ALM LEV**
 - Alarm level
 - Options: HIGH and MED.

- **ALM REC**
 - Alarm recording
 - ON: When a CO₂ alarm occurs, the monitor enables the recording;
 - OFF: When a CO₂ alarm occurs, the monitor does not enable the recording.

- **CO₂ ALM HI**
 - Upper alarm limit of EtCO₂

- **CO₂ ALM LO**
 - Lower alarm limit of EtCO₂

- **INS ALM HI**
 - Upper alarm limit of InsCO₂
- **AWRR ALM HI**
 Upper alarm limit of AwRR

- **AWRR ALM LO**
 Lower alarm limit of AwRR

- **APNEA ALM**
 Determines the apnea alarm delay.
 If the apnea of the patient exceeds the preset apnea alarm delay, the monitor triggers an alarm and gives the " CO2 APNEA " alarm message.
 Options: 10S, 15S, 20S, 25S, 30S, 35S and 40S.

- **Sweep**
 Waveform speed
 Options: 6.25, 12.5 and 25.0.
 Unit: mm/s.

- **UNIT**
 Options: mmHg, kPa and %.

- **WAVE SCALE**
 Options: HIGH and LOW.
 This option allows you to adjust the amplitude of the CO2 waveform.

- **WORK MODE**
 Options: MEASURE and STANDBY.
 To start the CO2 monitoring, select the MEASURE mode.
 In the STANDBY mode, the air pump and infrared ray source of the CO2 module are disabled. Hence, decreases the power consumption and prolongs the operating life of infrared ray source and the whole CO2 module.

Alarm limits:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>(lower limit+2) ≤ 100</td>
<td>0 ≤ (upper limit-2)</td>
<td>1</td>
</tr>
<tr>
<td>INS</td>
<td>0 ≤ 100</td>
<td>/</td>
<td>1</td>
</tr>
<tr>
<td>AwRR</td>
<td>(lower limit+2) ≤ 150</td>
<td>0 ≤ (upper limit-2)</td>
<td>1</td>
</tr>
</tbody>
</table>
Default alarm limits:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patient type</th>
<th>Upper limit</th>
<th>Lower limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Adult</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Pediatric</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Neonate</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>INS</td>
<td>Adult</td>
<td>4</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Pediatric</td>
<td>4</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Neonate</td>
<td>4</td>
<td>/</td>
</tr>
<tr>
<td>AwRR</td>
<td>Adult</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Pediatric</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Neonate</td>
<td>100</td>
<td>30</td>
</tr>
</tbody>
</table>

NOTE

- The apnea alarm cannot be disabled.
- When the CO2 monitoring is not required, it is recommended the water trap not be connected and the work mode be set to STANDBY.

Other Setup

Selecting OTHER SETUP option opens the following menu.

Figure 15-4 CO2 Other Setup Menu
You can perform the following settings in this menu.

- **PUMP RATE**: Determines the sampling rate of the CO2 module pump.
- **N2O COMPEN**: N2O compensation
 The presence of nitrous oxide causes the CO2 value to be higher than the actual value. Use this option to compensate for the presence of N2O.
- **O2 COMPEN**: O2 compensation
 The presence of a large concentration of oxygen causes the CO2 value to be lower than the actual value. Use this option to compensate for the presence of O2.
- **Des COMPEN**: Desflurane compensation
 The presence of desflurane causes the CO2 value to be higher than the actual value. Use this option to compensate for the presence of desflurane.

NOTE

- The unit of N2O COMPEN, O2 COMPEN and Des COMPEN is “%”. The concentration of N2O, O2 and Desflurane can be obtained from the anesthesia machine.
- Set the N2O COMPEN, O2 COMPEN and Des COMPEN according to the practical situation. Incorrect setting might incur errors from the actual value and cause misdiagnosis.

- **BTPS**: Body Temperature and Pressure, Saturated
 Options: ON and OFF.
 When BTPS is turned ON, the system performs BTPS compensation automatically; when BTPS is turned OFF, the BTPS compensation is disabled.

When measuring the CO2 content inside the patient’s lung, turn ON BTPS. Normally, the lung temperature of the patient is 37℃ and the water vapor is sufficient or regarded as saturated. But the temperature and water vapor content of the sampling line are different from the patient’s exhalation. Thus, when the patient’s exhalation passes the sampling line, the accuracy of the CO2 concentration measured by the sensor will be adversely affected. To ensure an accurate measurement, you should turn ON the BTPS. In this mode, the system adjusts the calculation coefficient automatically, so that the measured value is just the actual CO2 content in the patient’s lung.

When measuring the CO2 content of the environment or a certain vessel, turn OFF BTPS. In the standard ambient pressure and dry gas, the accuracy of the sensor measurement is not affected.
NOTE

- When measuring a moist gas of saturated water vapor at the body temperature and the ambient pressure, turn ON BTPS; when measuring a dry gas at the ambient temperature and pressure, turn OFF BTPS.

- **ZERO CAL**
 This option allows you to zero manually so as to eliminate the adverse affect of baseline drift in the process of measurement.

- **CONFIG >>**
 Select CONFIG >> to access the CO2 CONFIG menu. You can select either FACTORY CONF or USER CONF. After finishing the selection and exiting the menu, a dialog pops up asking for confirmation of your selection.

15.2.4 CO₂ User Maintain Menu

Select CO2 USER MAINTAIN >> in USER MAINTAIN menu. The following menu appears.

![CO2 User Maintain Menu](image)

Figure 15-5 CO₂ User Maintain Menu
The following information is displayed in the menu above.

- **CO2**
The currently measured CO2 content.
Unit: %.
In the field at the right of the CO2 value, you can select a standard gas containing a certain amount of CO2 for calibration.
Options: 3%, 4%, 5%, 6% and 7%.

- **BAROMETRIC**
The currently measured barometric pressure.
Unit: mmHg.

- **SENSOR TEMP**
The currently measured temperature around the infrared sensor.
Unit: °C.

- **CUR PUMP RATE**
The currently measured pumping rate.
Unit: ml/min.

- **SET PUMP RATE**
The sampling flow rate set by the user.

- **ZERO CAL**
This option allows you to zero the CO2 module, so as to eliminate the adverse affect of the baseline drift in the process of measurement. Perform zeroing prior to concentration calibration.

- **CONFIRM CAL**
This option allows you to confirm the calibration of the CO2 module.

Calibration Procedure

1. Verify the module enters the ready-to-measure status.
2. Connect a gas bottle with the CO2 sensor connector on the monitor as shown below.

![Connections for Calibration](image)

Figure 15-6 Connections for Calibration
3. Fill the gas bottle with a standard gas of certain CO2 content (3%, 4%, 5%, 6% and 7%), and input the gas to the monitor.

4. Open the CO2 USER MAINTAIN menu, and set the CO2 field to a value, which is the same with the CO2 content of the gas bottle.

5. When the CO2 USER MAINTAIN menu displays the currently measured CO2 content, wait until a stable reading is indicated, and then select the CONFIRM CAL option to start calibrating the CO2 module.

6. If the calibration succeeds, “CALIBRATE SUCCESS!” will be displayed in the CO2 USER MAINTAIN menu. If fails, “CAL FAIL, TRY AGAIN!” will be displayed, and re-calibration is required.

7. Select the EXIT option to exit the CO2 USER MAINTAIN menu.

15.2.5 Maintenance and Cleaning

- The sampling line of the sidestream CO2 module is disposable and cannot be disinfected for reuse.

- In case of an exception in the sampling system of the CO2 module, check for entanglement of the sampling line. If the sampling line is not entangled, remove it from the water trap. In this situation, if the screen displays a prompt information indicating the CO2 sampling line is abnormal, the water trap must have been blocked, and you must replace it with a new one. If no prompt information is given, the sampling line must have been blocked, and you should replace with a new sampling line.

- Routine calibration of the sidestream CO2 module is not required. But the calibration must be performed every year, or when great inaccuracy of measurement is found.
15.3 Oridion CO₂ Module

NOTE

- This section is applicable to a monitor equipped with the Oridion CO₂ module only.
- When the sample flow is lower than 42.5 ml/min, alarm message will be displayed, and the CO₂ module will stop work.

15.3.1 Principles of Operation

⚠️ WARNING

- The CO₂ module should be protected against crash and vibration.
- This CO₂ module is applicable to neonate, pediatric as well as adult patients.
- Inaccurate measurement may occur when the monitor is operating in an environment of excessively high CO₂ content (>0.5%).

The monitor adopts Oridion (microstream) CO₂ module. The measurement of this module is based on the feature that the CO₂ molecule absorbs infrared ray. The measurement procedure is as follows: send the CO₂ to a measurement chamber inside the module through the airway system, and then irradiate 4.26μm infrared ray at one side of the chamber and use the sensor to measure the attenuation degree of the received infrared ray at the other side. Since the attenuation degree of the infrared ray is proportional to the concentration of CO₂, the CO₂ concentration is calculated. The measured CO₂ concentration is thereafter converted into the partial pressure under the same temperature and pressure, and then displayed.

The relation between the partial pressure and the CO₂ concentration is given below:

\[
\text{CO}_2 \text{ partial pressure (mmHg)} = \frac{\text{CO}_2 \text{ concentration (\%)} \times \text{P}_{\text{amb}} \text{ (ambient pressure, mmHg)}}{100}
\]

\[
\text{CO}_2 \text{ partial pressure (kPa)} = \frac{\text{CO}_2 \text{ partial pressure (mmHg)}}{7.5}
\]
15.3.2 Preparations for CO₂ Measurement

1. Plug the sampling line into its receptacle before the measurement.
2. Open the CO₂ SETUP menu and set WORK MODE to MEASURE.
3. The “CO₂ START UP” prompt information is displayed on the screen until the startup is finished.

Figure 15-7 CO₂ Module Airway Connections

When the monitor is powered on for the first time, the CO₂ module enters the STANDBY mode by default. To activate the CO₂ module, you must change the work mode to MEASURE. The work mode of the CO₂ module keeps unchanged when the monitor is restarted. For instance, if the monitor is power off when the CO₂ module is working in the MEASURE mode, the CO₂ module will automatically enter the MEASURE mode after the monitor is restarted. For details about WORK MODE, please refer to the section 15.3.3CO₂.

⚠️ WARNING

- Do not use the accessory if the packaging or the internal accessory is damaged. Return it to the manufacturer.
- The sidestream sampling line is disposable. It should not be disinfected for reuse or cross-used by different patients.
15.3.3 CO2 Setup Menu

Selecting the CO2 label in the parameter window opens the following menu.

![Figure 15-8 CO2 Setup Menu](image)

You can perform the following settings in this menu.

- **ALM**
 - Alarm on/off status
 - ON: When a CO2 alarm occurs, the monitor gives alarm indications and stores the alarm;
 - OFF: When a CO2 alarm occurs, the monitor neither gives alarm indications nor stores the alarm;
 - When OFF is selected, the icon is displayed on the right of the CO2 label.

- **ALM LEV**
 - Alarm level
 - Options: HIGH and MED.

- **ALM REC**
 - Alarm recording
 - ON: When a CO2 alarm occurs, the monitor enables the recording;
 - OFF: When a CO2 alarm occurs, the monitor does not enable the recording.

- **CO2 ALM HI**
 - Upper alarm limit of EtCO2

- **CO2 ALM LO**
 - Lower alarm limit of EtCO2

- **INS ALM HI**
 - Upper alarm limit of InsCO2
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWRR ALM HI</td>
<td>Upper alarm limit of AwRR</td>
</tr>
<tr>
<td>AWRR ALM LO</td>
<td>Lower alarm limit of AwRR</td>
</tr>
<tr>
<td>APNEA ALM</td>
<td>Determines the apnea alarm delay. If the apnea of the patient exceeds the</td>
</tr>
<tr>
<td></td>
<td>preset apnea alarm delay, the monitor triggers an alarm and gives the “CO2</td>
</tr>
<tr>
<td>SWEEP</td>
<td>Waveform speed. Options: 6.25, 12.5 and 25.0. Unit: mm/s.</td>
</tr>
<tr>
<td>UNIT</td>
<td>Options: mmHg, kPa And %.</td>
</tr>
<tr>
<td>WAVE SCALE</td>
<td>Options: HIGH and LOW. This option allows you to adjust the amplitude of the</td>
</tr>
<tr>
<td></td>
<td>CO2 waveform.</td>
</tr>
<tr>
<td>WORK MODE</td>
<td>Options: MEASURE and STANDBY.</td>
</tr>
<tr>
<td></td>
<td>To start the CO2 monitoring, select the MEASURE mode. In the STANDBY mode,</td>
</tr>
<tr>
<td></td>
<td>the air pump and infrared ray source of the CO2 module are disabled. Hence,</td>
</tr>
<tr>
<td></td>
<td>decreases the power consumption and prolongs the operating life of infrared</td>
</tr>
<tr>
<td></td>
<td>ray source and the whole CO2 module.</td>
</tr>
</tbody>
</table>

NOTE

- When the CO2 monitoring is not required, it is recommended the work mode be set to STANDBY.
Other Setup

Selecting the OTHER SETUP option opens the following menu.

![Figure 15-9 CO2 Other Setup Menu](image)

You can perform the following settings in this menu.

- **MAX HOLD**: If Max Hold is configured to 10 sec or 20 sec, the etCO2 numeric shows the highest CO2 value measured within the previous 10 or 20 seconds. If set to Off the etCO2 numeric shows breath-to-breath value.

- **BTPS**: Body temperature and pressure, Saturated Options: ON and OFF.

When BTPS is turned ON, the system performs BTPS compensation automatically; when BTPS is turned OFF, the BTPS compensation is disabled.

When measuring the CO2 content inside the patient’s lung, turn ON BTPS. Normally, the lung temperature of the patient is 37°C and the water vapor is sufficient or regarded as saturated. But the temperature and water vapor content of the sampling line are different from the patient’s exhalation. Thus, when the patient’s exhalation passes the sampling line, the accuracy of the CO2 concentration measured by the sensor will be adversely affected. To ensure an accurate measurement, you should turn ON the BTPS. In this mode, the system adjusts the calculation coefficient automatically, so that the measured value is just the actual CO2 content in the patient’s lung.

When measuring the CO2 content of the environment or a certain vessel, turn OFF BTPS. In the standard ambient pressure and dry gas, the accuracy of the sensor measurement is not affected.

NOTE

- When measuring a moist gas of saturated water vapor at the body temperature and the ambient pressure, turn ON BTPS; when measuring a dry gas at the ambient temperature and pressure, turn OFF BTPS.
15.3.4 CO₂ User Maintain Menu

Select CO₂ USER MAINTAIN >> in USER MAINTAIN menu. The following menu appears.

![CO₂ User Maintain Menu](image)

The following information is displayed in the menu above.

- **CO₂**
 - The currently measured CO₂ content.
 - Unit: %.

 In the field at the right of the CO₂ value, you can select a standard gas containing a certain amount of CO₂ for calibration.

- **BAROMETRIC**
 - The currently measured barometric pressure.
 - Unit: mmHg.

- **CONFIRM CAL**
 - This option allows you to confirm the calibration of the CO₂ module.
Calibration Procedure

1. Verify the module enters the Full Accuracy Mode.
2. Connect a gas bottle with the CO2 sensor connector on the monitor as shown below.

![Figure 15-11 Connections for Calibration]

3. Fill the gas bottle with a standard gas of certain CO2 content (4% to 6%), and input the gas to the monitor.
4. Open the CO2 USER MAINTAIN menu, and set the CO2 field to a value, which is the same with the CO2 content of the gas bottle.
5. When the CO2 USER MAINTAIN menu displays the currently measured CO2 content, wait until a stable reading is indicated, and then select the CONFIRM CAL option to start calibrating the CO2 module.
6. If the calibration succeeds, “CALIBRATE SUCCESS!” will be displayed in the CO2 USER MAINTAIN menu. If fails, “CAL FAIL, TRY AGAIN!” will be displayed, and re-calibration is required.
7. Select the EXIT option to exit the CO2 USER MAINTAIN menu.

15.3.5 Maintenance and Cleaning

- The sampling line of the microstream CO2 module is disposable and cannot be disinfected for reuse.
- Routine calibration of the microstream CO2 module is not required. But the calibration must be performed if it is prompted in the CO2 USER MAINTAIN menu, or great inaccuracy of measurement is found.
15.3.6 Oridion Information

Microstream

This trademark is registered in Israel, Japan, Germany and US.

Oridion Patents

This device and the CO₂ sampling consumable designed for use herewith is covered by one or more of the following USA patents: 4,755,675; 5,300,859; 5,657,750; 5,857,461 and international equivalents. USA and international patents pending.

No Implied Licence

Possession or purchase of this device does not convey any express or implied license to use the device with unauthorized consumable CO₂ sampling consumable products which would, alone, or in combination with this device, fall within the scope of one or more of the patents relating to this device and/or CO₂ sampling consumable products.

15.4 Removing Exhaust Gases from the System

⚠️ WARNING

- Anesthetics: When using the Sidestream or Microstream CO₂ measurement on patients who are receiving or have recently received anesthetics, connect the outlet to a scavenging system, or to the anesthesia machine/ventilator, to avoid exposing medical staff to anesthetics.

To remove the sample gas to a scavenging system, connect an exhaust tube to the gas outlet connector of the module.
16 Maintenance

⚠️ WARNING

- Failure on the part of the responsible hospital or institution employing the use of the monitoring equipment to implement a satisfactory maintenance schedule may cause undue equipment failure and possible health hazard.
- The safety inspection or maintenance, which requires opening the monitor housing, must be performed by trained and authorize personnel only. Otherwise, equipment failure and possible health hazard may be caused.

16.1 Inspection and Maintenance

Make sure the qualified service personnel have implemented a complete inspection before putting the monitor into operation, after monitor servicing or system upgrading, or after the monitor has been used for 6-12 consecutive months. This is to ensure the normal operation of the system.

Follow these guidelines when inspecting the equipment:
- The environment and the power supply meet the specified requirements.
- Inspect the keys, control knob, connectors and accessories for damage.
- Inspect the power cords for fraying or other damage and check the insulation.
- The grounding cables are correctly connected.
- Only specified accessories like electrodes, sensors and probes are applied.
- The monitor clock is correct.
- The audible and visual alarms functions normally.
- The recorder functions normally and the recorder paper meets the requirement.
- Batteries are in good status and can operate normally.

The defibrillator synchronization function must be verified according to your hospital regulations, and be checked by a qualified technician once every 3 months.

In case of any damage or exception, do not use the monitor. Contact the technician in your hospital or our Customer Service immediately.
CAUTION

- Be sure to check and maintain batteries regularly. For detailed battery check and maintenance procedures and battery guidelines, see Section 2.5 Batteries.

16.2 Cleaning

WARNING

- Be sure to shut down the system and disconnect all power cords from the outlet before cleaning the equipment.

Your equipment should be cleaned on a regular basis. If there is heavy pollution or lots of dust and sand in your place, the equipment should be cleaned more frequently. Before cleaning the equipment, consult your hospital’s regulations for cleaning, disinfecting and sterilizing equipment.

The exterior surfaces of the equipment may be cleaned with a clean and soft cloth, sponge or cotton ball, dampened with a non-erosive cleaning solution. Drying off excess cleaning solution before cleaning the equipment is recommended. Following are examples of cleaning solutions:

- Diluted soap water
- Diluted ammonia water
- Diluted sodium hyoichlo (bleaching agent)
- Diluted formaldehyde (35 to 37%)
- Hydrogen peroxide (3%)
- Ethanol (70%), or Isopropanol (70%)

To avoid damage to the equipment, follow these rules:

- ALWAYS dilute the solutions according to the manufacturer’s suggestions.
- ALWAYS wipe off all the cleaning solution with a dry cloth after cleaning.
- NEVER submerge the equipment into water or any cleaning solution, or pour or spray water or any cleaning solution on the equipment.
- NEVER permit fluids run into the casing, switches, connectors, or any ventilation openings in the equipment.
- NEVER use abrasive, erosive cleaners, or cleaners containing acetone.
Failure to follow these rules may erode or fray the casing, or blur lettering on the labels, or cause equipment failures.

For cleaning information of accessories, please refer to the chapters for specific patient parameters and the instructions for use of the accessories.

16.3 Disinfection and Sterilization
Sterilization or disinfection may cause damage to the equipment. We recommend the sterilization and disinfection are contained in the hospital’s servicing schedule only when necessary. The equipment should be cleaned prior to sterilization and disinfection.

Recommended sterilization material: Alcohol based (Ethanol 70%, Isopropanol 70%), and aldehyde based.

⚠️ WARNING

- Disinfection or sterilization may cause damage to the equipment; therefore, when preparing to disinfect or sterilize the equipment, consult your hospital’s infection controllers or professionals.
- The cleaning solutions above can only be used for general cleaning. If you use them to control infections, we shall assume no responsible for the effectiveness.

NOTE

- ALWAYS dilute the solutions according to the manufacturer’s suggestions and adopt lower concentration if possible.
- NEVER submerge the equipment into water or any solution, or pour water or any solution on the equipment;
- ALWAYS wipe off all the excess liquids on the equipment surface and accessory surface with a dry cloth;
- Never use EtO and formaldehyde to disinfect.
- Never permit high-pressure and high-temperature disinfection of the equipment and accessories.
FOR YOUR NOTES
17 Accessories

⚠️ WARNING

- Use accessories specified in this chapter. Using other accessories may cause damage to the patient monitor or not meet the claimed specifications.
- The operating and storage conditions of the patient monitor should meet the specifications claimed by respective accessories. For environmental specifications of each accessory, refer to instructions for use of respective accessories.
- Single-use accessories are not designed to be reused. Reuse may cause a risk of contamination and affect the measurement accuracy.
- Check the accessories and their packages for any sign of damage. Do not use them if any damage is detected.

17.1 ECG Accessories

ECG Electrodes

<table>
<thead>
<tr>
<th>Model</th>
<th>Quantity</th>
<th>Patient Category</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>10 pieces</td>
<td>Adult</td>
<td>0010-10-12304</td>
</tr>
</tbody>
</table>

Separate Trunk Cable

<table>
<thead>
<tr>
<th>Leadwire supported</th>
<th>Compatible with</th>
<th>Model</th>
<th>Type</th>
<th>Patient Category</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-leadwire</td>
<td>AHA</td>
<td>EV 6122</td>
<td>Defibrillator-proof</td>
<td>Neonate, Infant</td>
<td>040-000753-00</td>
</tr>
<tr>
<td>3-leadwire</td>
<td>AHA</td>
<td>EV 6102</td>
<td>Defibrillator-proof</td>
<td>Neonate</td>
<td>0010-30-12377</td>
</tr>
<tr>
<td>3/5-leadwire</td>
<td></td>
<td>EV 6101</td>
<td></td>
<td>Adult, pediatric</td>
<td>0010-30-42782</td>
</tr>
</tbody>
</table>

Note: The cables listed in the table above must be used together with leadwires.
Cable Sets

3-Electrode Cable Sets

<table>
<thead>
<tr>
<th>Type</th>
<th>Compatible with</th>
<th>Model</th>
<th>Patient Category</th>
<th>Part No.</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clip</td>
<td>AHA</td>
<td>EL6301A</td>
<td>Adult, pediatric</td>
<td>0010-30-42726</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL6303A</td>
<td></td>
<td>0010-30-42731</td>
<td>Long</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL6305A</td>
<td>Neonate</td>
<td>0010-30-42896</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL6311A</td>
<td>Neonate, Infant</td>
<td>040-000148-00</td>
<td>DIN Connector</td>
</tr>
<tr>
<td>Snap</td>
<td>AHA</td>
<td>EL6301B</td>
<td>Adult, pediatric</td>
<td>0010-30-42734</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL6311B</td>
<td>Neonate, Infant</td>
<td>040-000146-00</td>
<td>DIN Connector</td>
</tr>
</tbody>
</table>

5-Electrode Cable Sets

<table>
<thead>
<tr>
<th>Type</th>
<th>Compatible with</th>
<th>Model</th>
<th>Patient Category</th>
<th>Part No.</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clip</td>
<td>AHA</td>
<td>EL6501A</td>
<td>Adult, pediatric</td>
<td>0010-30-42727</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL6503A</td>
<td></td>
<td>0010-30-42729</td>
<td>Long</td>
</tr>
<tr>
<td>Snap</td>
<td>AHA</td>
<td>EL6501B</td>
<td></td>
<td>0010-30-42735</td>
<td>/</td>
</tr>
</tbody>
</table>

Note: The leadwires listed in the table above must be used with separate trunk cables. And the leadsets with DIN connector should be used only with the cable EV6122.
17.2 SpO₂ Accessories

Extension Cable

<table>
<thead>
<tr>
<th>Module type</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mindray DS SpO₂ Module</td>
<td>0010-20-42594</td>
</tr>
</tbody>
</table>

SpO₂ Sensors

The SpO₂ sensor material that patients or other staff will come into contact with have undertaken the bio-compatibility test and is verified to be in compliance with ISO 10993-1.

<table>
<thead>
<tr>
<th>Mindray SpO₂ Module</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Model</td>
</tr>
<tr>
<td>Single patient use</td>
<td>520A</td>
</tr>
<tr>
<td></td>
<td>520P</td>
</tr>
<tr>
<td></td>
<td>520I</td>
</tr>
<tr>
<td></td>
<td>520N</td>
</tr>
<tr>
<td>Reusable</td>
<td>518B</td>
</tr>
<tr>
<td></td>
<td>512F</td>
</tr>
<tr>
<td></td>
<td>512H</td>
</tr>
</tbody>
</table>

- The main cable must be used with the matching SpO₂ sensor.
- The maximum photic output consumption of the sensor is less than 18 mW.

The information about the wavelength range and maximum photic output consumption can be especially useful to clinicians, for example, clinicians performing photodynamic therapy.
17.3 NIBP Accessories

Tubing

<table>
<thead>
<tr>
<th>Type</th>
<th>Patient Category</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reusable</td>
<td>Adult, pediatric</td>
<td>509B-30-06259</td>
</tr>
<tr>
<td></td>
<td>Neonate</td>
<td>509B-30-06260</td>
</tr>
</tbody>
</table>

Reusable Cuff

<table>
<thead>
<tr>
<th>Model</th>
<th>Patient Category</th>
<th>Measurement Site</th>
<th>Limb Circumference (cm)</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>Blood Pressure Cuff Starter Kit</td>
<td>/</td>
<td>/</td>
<td>0020-00-0184-01</td>
</tr>
</tbody>
</table>

Single-Patient Cuff

<table>
<thead>
<tr>
<th>Model</th>
<th>Patient Category</th>
<th>Measurement Site</th>
<th>Limb Circumference (cm)</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM1500A</td>
<td>Neonate</td>
<td>Arm</td>
<td>3.1 to 5.7</td>
<td>001B-30-70692</td>
</tr>
<tr>
<td>CM1500B</td>
<td>Neonate</td>
<td>Arm</td>
<td>4.3 to 8.0</td>
<td>001B-30-70693</td>
</tr>
<tr>
<td>CM1500C</td>
<td>Neonate</td>
<td>Arm</td>
<td>5.8 to 10.9</td>
<td>001B-30-70694</td>
</tr>
<tr>
<td>CM1500D</td>
<td>Neonate</td>
<td>Arm</td>
<td>7.1 to 13.1</td>
<td>001B-30-70695</td>
</tr>
</tbody>
</table>

17.4 TEMP Accessories

Extension Cable

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Temp probe</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reusable</td>
<td>MR420</td>
<td>MR411, MR412</td>
<td>0011-30-90444</td>
</tr>
</tbody>
</table>

Temp Probes

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Patient Category</th>
<th>Measurement Site</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reusable</td>
<td>MR401</td>
<td>Adult</td>
<td>Esophageal/Rectal</td>
<td>0011-30-90440</td>
</tr>
<tr>
<td></td>
<td>MR403</td>
<td>Skin</td>
<td>0011-30-90442</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MR402</td>
<td>Pediatric, neonate</td>
<td>Esophageal/Rectal</td>
<td>0011-30-90441</td>
</tr>
<tr>
<td></td>
<td>MR404</td>
<td>Skin</td>
<td>0011-30-90443</td>
<td></td>
</tr>
<tr>
<td>Disposable</td>
<td>MR411</td>
<td>/</td>
<td>Esophageal/Rectal</td>
<td>0011-30-90446</td>
</tr>
<tr>
<td></td>
<td>MR412</td>
<td>Skin</td>
<td>0011-30-90447</td>
<td></td>
</tr>
</tbody>
</table>

Note: The disposable Temp probes listed in the table above must be used with the matching extension cables.
17.5 IBP Accessories

<table>
<thead>
<tr>
<th>Accessories Kit No.</th>
<th>Model</th>
<th>Components</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>IM 2101</td>
<td>IM2201 6Pin IBP Cable (for Hospira)</td>
<td>001C-30-70760</td>
</tr>
<tr>
<td>/</td>
<td>IM 2102</td>
<td>IM2102 6Pin IBP Cable (for BD)</td>
<td>001C-30-70758</td>
</tr>
<tr>
<td>/</td>
<td></td>
<td>6 Pin IBP Cable for Memscap (SP844 transducer)</td>
<td>0010-21-43081</td>
</tr>
<tr>
<td>/</td>
<td></td>
<td>6 Pin IBP Cable for Edwards</td>
<td>0010-21-43094</td>
</tr>
</tbody>
</table>

It is proved through tests that the following accessories are compatible with the patient monitor. Only the accessories proceeded by “*” are available from our company. If you want to purchase other accessories, contact respective manufacturers and make sure if these accessories are approved for sale in local.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Accessory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith Medical (Medex)</td>
<td>MX961Z14 trunk cable</td>
</tr>
<tr>
<td></td>
<td>MX960 transducer</td>
</tr>
<tr>
<td></td>
<td>MX9605A monitoring kit</td>
</tr>
<tr>
<td></td>
<td>MX960E6441 transducer seat</td>
</tr>
<tr>
<td></td>
<td>MX261 single channel transducer holder</td>
</tr>
<tr>
<td></td>
<td>MX262 dual-channel transducer holder</td>
</tr>
<tr>
<td></td>
<td>(More transducer holders are available, refer to Medex for detail)</td>
</tr>
<tr>
<td>Braun</td>
<td>Trunk cable (REF: 5203511)</td>
</tr>
<tr>
<td></td>
<td>Combitrans series monitoring kit (Refer to Braun for detail)</td>
</tr>
<tr>
<td></td>
<td>Transducer holder (REF: 5215800)</td>
</tr>
<tr>
<td></td>
<td>Transducer seat (Refer to Braun for detail)</td>
</tr>
<tr>
<td>Memscap</td>
<td>*Trunk cable (0010-21-43081)</td>
</tr>
<tr>
<td></td>
<td>SP844 transducer</td>
</tr>
<tr>
<td></td>
<td>844-26 monitoring kit</td>
</tr>
<tr>
<td></td>
<td>84X-49 transducer rest</td>
</tr>
<tr>
<td>Utah</td>
<td>Trunk cable (REF: 650-201)</td>
</tr>
<tr>
<td></td>
<td>Deltran series transducers</td>
</tr>
<tr>
<td></td>
<td>(Multiple types of Deltran series transducers are available, refer to Utah for detail)</td>
</tr>
<tr>
<td></td>
<td>transducer holder (ERF: 650-150)</td>
</tr>
<tr>
<td></td>
<td>3-hole Deltran rest (REF: 650-100)</td>
</tr>
<tr>
<td></td>
<td>4-hole Deltran rest (REF: 650-105)</td>
</tr>
<tr>
<td>Edwards</td>
<td>*Trunk cable (0010-21-43094)</td>
</tr>
<tr>
<td></td>
<td>Truwave series transducers</td>
</tr>
<tr>
<td></td>
<td>(Multiple types of Truwave series transducers are available, refer to Edwards for detail)</td>
</tr>
<tr>
<td></td>
<td>DTSC transducer holder</td>
</tr>
<tr>
<td></td>
<td>DTH4 transducer rest</td>
</tr>
</tbody>
</table>
17.6 CO₂ Accessories

Mindray DS CO₂ Accessories

<table>
<thead>
<tr>
<th>Material</th>
<th>Patient Category</th>
<th>Remark</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRYLINE Watertrap</td>
<td>Adult, pediatric</td>
<td></td>
<td>9200-10-10530</td>
</tr>
<tr>
<td>DRYLINE Watertrap</td>
<td>Neonate</td>
<td></td>
<td>9200-10-10574</td>
</tr>
<tr>
<td>Sampling Line, Adult 2.5m</td>
<td>Adult, pediatric</td>
<td></td>
<td>9200-10-10533</td>
</tr>
<tr>
<td>Sampling Line, Neonate, 2.5m</td>
<td>Neonate</td>
<td></td>
<td>9200-10-10555</td>
</tr>
<tr>
<td>Adult Nasal CO₂ Sample Cannula</td>
<td>Adult</td>
<td>Disposable</td>
<td>M02A-10-25937</td>
</tr>
<tr>
<td>Pediatric Nasal CO₂ Sample Cannula</td>
<td>Pediatric</td>
<td></td>
<td>M02A-10-25938</td>
</tr>
<tr>
<td>Infant Nasal CO₂ Sample Cannula</td>
<td>Infant</td>
<td></td>
<td>M02B-10-64509</td>
</tr>
<tr>
<td>DRYLINE Airway Adapter</td>
<td>/</td>
<td>Straight</td>
<td>9000-10-07486</td>
</tr>
</tbody>
</table>

17.7 Others

<table>
<thead>
<tr>
<th>Model</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium battery</td>
<td>M05-010001-06 (black)</td>
</tr>
<tr>
<td></td>
<td>0146-00-0099 (gray)</td>
</tr>
<tr>
<td>CF Storage Card</td>
<td>023-000034-00</td>
</tr>
<tr>
<td></td>
<td>0000-10-10798</td>
</tr>
<tr>
<td>Data Output Software Package</td>
<td>7000-30-24590</td>
</tr>
<tr>
<td>U.S. power cord</td>
<td>DA8K-10-14452</td>
</tr>
<tr>
<td>Grounding cable</td>
<td>1000-21-00122</td>
</tr>
<tr>
<td>Nurse call cable</td>
<td>8000-21-10361</td>
</tr>
<tr>
<td>Roll Stand bracket</td>
<td>0010-30-42939</td>
</tr>
<tr>
<td>Thermal Paper, one roll (50mmX20m)</td>
<td>0683-00-0505-01</td>
</tr>
<tr>
<td>Wall Mount bracket</td>
<td>0010-30-42948</td>
</tr>
<tr>
<td>Bedrail Hook</td>
<td>8000-30-90169</td>
</tr>
<tr>
<td>Bedrail Clamp</td>
<td>8000-30-90170</td>
</tr>
</tbody>
</table>
Product Specifications

A.1 Safety Classifications

| Type of protection against electric shock | Class I with internal electric power supply. Where the integrity of the external protective earth (ground) in the installation or its conductors is in doubt, the equipment shall be operated from its internal electric power supply (batteries). |
| Degree of protection against electric shock | CO2: BF (defibrillation proof)
ECG/RESP/TEMP/SpO2/NIBP/IBP: CF (defibrillation proof) |
Degree of protection against hazards of ignition of flammable anesthetic mixtures	Not protected (ordinary)
Degree of protection against harmful ingress of water	Not protected (ordinary)
Mode of operation	Continuous
Equipment type	Portable

A.2 Environmental Specifications

| Operating temperature | 0 to 40°C
5 to 35°C (With CO2 module) |
| Operating humidity | 15 to 95%, noncondensing |
| Operating altitude | -500 to 4600 m (-1640 to 15092 feet)
-305 to 3014 m (-1000 to 9889 feet) (with CO2 or Nellcor SpO2 module) |
| Storage temperature | -20 to 60°C |
| Storage humidity | 10 to 95%, noncondensing |
| Storage and transportation altitude | -500 to 13100 m (-1640 to 42979 feet)
-305 to 6096 m (-1000 to 20000 feet) (with CO2 or Nellcor SpO2 module) |
A.3 Power Source Specifications

<table>
<thead>
<tr>
<th>AC Power Supply Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
</tr>
<tr>
<td>Current</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Fuse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internal battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of batteries</td>
</tr>
<tr>
<td>Battery type</td>
</tr>
<tr>
<td>Time to shutdown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sealed lead-acid battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage</td>
</tr>
<tr>
<td>Capacity</td>
</tr>
<tr>
<td>Operating time</td>
</tr>
<tr>
<td>Charge time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lithium battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage</td>
</tr>
<tr>
<td>Capacity</td>
</tr>
<tr>
<td>Operating time</td>
</tr>
<tr>
<td>Charge time</td>
</tr>
</tbody>
</table>
A.4 Hardware Specifications

<table>
<thead>
<tr>
<th>Physical</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>261 × 240 × 171mm (width×height×depth)</td>
</tr>
<tr>
<td>Weight</td>
<td>< 5 kg (With no accessory and battery)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Color TFT LCD</td>
</tr>
<tr>
<td>Size</td>
<td>8.4 inches (diagonal)</td>
</tr>
<tr>
<td>Resolution</td>
<td>800×600 pixels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recorder</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Thermal dot array</td>
</tr>
<tr>
<td>Horizontal resolution</td>
<td>160 dots/cm (at 25 mm/s recording rate)</td>
</tr>
<tr>
<td>Vertical resolution</td>
<td>80 dots/cm</td>
</tr>
<tr>
<td>Width of the recorder paper</td>
<td>50 mm</td>
</tr>
<tr>
<td>Length of the recorder paper</td>
<td>20 m</td>
</tr>
<tr>
<td>Recording rate</td>
<td>25 mm/s, 50 mm/s, ± 5%</td>
</tr>
<tr>
<td>Recorded waveforms</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LED indicator</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm indicator</td>
<td>1 (yellow and red)</td>
</tr>
<tr>
<td>AC power indicator</td>
<td>1 (green)</td>
</tr>
<tr>
<td>Battery indicator</td>
<td>1 (green)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Audio indicator</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Connectors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>1 AC power connector</td>
</tr>
<tr>
<td>Parameter</td>
<td>ECG, RESP, TEMP, SpO2, NIBP, IBP, CO2</td>
</tr>
<tr>
<td>Network</td>
<td>1 standard RJ45 network connector, 100 BASE-TX</td>
</tr>
<tr>
<td>VGA</td>
<td>1 standard color VGA monitor connector, 15-PIN D-sub</td>
</tr>
<tr>
<td>Auxiliary output</td>
<td>1 BNC connector</td>
</tr>
<tr>
<td>Equipotentiality</td>
<td>1 equipotential grounding connector</td>
</tr>
</tbody>
</table>
A.5 Data Storage

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trend data</td>
<td>Long trend: 96 hours, resolution 1min, 5 min or 10 min.</td>
</tr>
<tr>
<td></td>
<td>Short trend: 1 hour, resolution 1 s or 5 s.</td>
</tr>
<tr>
<td>Alarm events</td>
<td>70 alarm events and associated waveforms (with user selectable</td>
</tr>
<tr>
<td></td>
<td>waveform length 8s, 16 or 32).</td>
</tr>
<tr>
<td>NIBP measurements</td>
<td>800 NIBP groups, including systolic pressures, mean pressures,</td>
</tr>
<tr>
<td></td>
<td>diastolic pressures and measurement time.</td>
</tr>
</tbody>
</table>

A.6 Wireless Network

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards</td>
<td>IEEE 802.11g, Wi-Fi compatible</td>
</tr>
<tr>
<td>Frequenct range</td>
<td>2.412 to 2.462GHz</td>
</tr>
<tr>
<td>Operating channel</td>
<td>China: 1 to 11</td>
</tr>
<tr>
<td></td>
<td>America: 10, 11</td>
</tr>
<tr>
<td></td>
<td>Canada: 11</td>
</tr>
<tr>
<td></td>
<td>Europe: 10</td>
</tr>
<tr>
<td></td>
<td>Spain: 11</td>
</tr>
<tr>
<td></td>
<td>France: 2</td>
</tr>
<tr>
<td></td>
<td>Japan: 2</td>
</tr>
<tr>
<td>Safe distance</td>
<td>10 m (a circle centering AP with the diameter of 10 m)</td>
</tr>
</tbody>
</table>

A.7 Signal Output Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards</td>
<td>Meets the requirements of EC60601-1 for short-circuit protection and leakage current</td>
</tr>
<tr>
<td>Output impedance</td>
<td>50Ω</td>
</tr>
<tr>
<td>ECG analog output</td>
<td></td>
</tr>
<tr>
<td>Bandwidth (-3dB; reference frequency: 10Hz)</td>
<td>Diagnostic mode: 0.05 to 100 Hz (812A module)</td>
</tr>
<tr>
<td></td>
<td>Monitor mode: 0.05 to 150 Hz (M08A module)</td>
</tr>
<tr>
<td></td>
<td>Surgery mode: 0.5 to 40 Hz</td>
</tr>
<tr>
<td></td>
<td>1 to 20 Hz</td>
</tr>
<tr>
<td>Maximum propagation delay</td>
<td>25 ms (In DIAGNOSTIC mode, NOTCH is OFF)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>1 V/mV± 5%</td>
</tr>
<tr>
<td>PACE rejection/enhancement</td>
<td>No pace rejection or enhancement</td>
</tr>
<tr>
<td>IBP analog output</td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>0 to 12.5 Hz (-3 dB, reference frequency: 1 Hz)</td>
</tr>
<tr>
<td>Maximum propagation Delay</td>
<td>55 ms (the filter function is disabled)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>1 V/100 mmHg ±5%</td>
</tr>
<tr>
<td>Nurse call output</td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td>Relay</td>
</tr>
<tr>
<td>Electrical specifications</td>
<td>≤60W, ≤2A, ≤36VDC, ≤25VAC</td>
</tr>
</tbody>
</table>
Conducting resistance | < 1Ω
---|---
Isolation voltage | > 1500 VAC
Signal type | Normally open or normally closed, selectable
Defibrillator synchronization pulse
Maximum time delay | 35 ms (R-wave peak to leading edge of the pulse)
Amplitude | 3.5 V (min) at 3 mA sourcing; 0.8 V (max) at 1 mA sinking
Pulse width | 100 ms ±10%
Rising and falling time | < 3 ms
VGA
Connector type | 15-PIN D-sub socket
Signal | RGB: 0.7 Vp-p/75Ω; Horizontal/vertical synchronization: TTL level

A.8 ECG Specifications

A.8.1 Mindray DS Software Package

<table>
<thead>
<tr>
<th>Lead naming style</th>
<th>AHA, EURO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead fault</td>
<td>The lead resistance is no greater than 51 kΩ and it is in parallel with a 0.047 µF capacitor, it will not cause a lead fault condition. For 3/5-lead, differential offsets ≤ ±300 mV, it will not cause a lead fault condition.</td>
</tr>
<tr>
<td>Sensitivity selection</td>
<td>1.25 mm/mV (×0.125), 2.5 mm/mV (×0.25), 5 mm/mV (×0.5), 10 mm/mV (×1), 20 mm/mV (×2) and AUTO</td>
</tr>
<tr>
<td>Sweep speed</td>
<td>12.5 mm/s, 25 mm/s, 50 mm/s</td>
</tr>
<tr>
<td>Bandwidth (-3 dB)</td>
<td>Diagnostic mode: 0.05 to 100 Hz (812A module) 0.05 to 150 Hz (M08A module) Monitor mode: 0.5 to 40 Hz Surgery mode: 1 to 20 Hz</td>
</tr>
<tr>
<td>Common mode rejection</td>
<td>Diagnostic mode: ≥90 dB Monitor mode: ≥105 dB Surgery mode: ≥105 dB (The notch filter is turned off.)</td>
</tr>
<tr>
<td>50/60Hz Notch Filtering</td>
<td>The monitor provides software filtering against the 50/60HZ industrial frequency. In monitor and surgery modes, the 50/60HZ filter will be turned on automatically. In diagnostic mode, the 50/60HZ filter will be turned off.</td>
</tr>
<tr>
<td>Input offset current</td>
<td>≤0.1µA (except currents to drive leads)</td>
</tr>
<tr>
<td>Differential input</td>
<td>≥ 5MΩ</td>
</tr>
<tr>
<td>Impedance</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Input signal range</td>
<td>±8mV (peak-to-peak value)</td>
</tr>
<tr>
<td>Accuracy of input signal reproduction</td>
<td>Methods A and D were used to establish overall system error and frequency response according to EC11.</td>
</tr>
</tbody>
</table>
| Auxiliary current (Leads off detection) | Active electrode: < 0.1 μA
Reference electrode: < 1 μA |
| Patient leakage current | < 10uA |
| Recovery time after defibrillation | < 5s |
| Calibration signal | 1 mV (peak-to-peak value), precision: ±5% |

<table>
<thead>
<tr>
<th>ESU protection</th>
<th></th>
</tr>
</thead>
</table>
| Incision mode: 300W
Congelation mode: 100W
Restore time: ≤10s | The monitor complies with the requirements of ANSI/AAMI EC13 Section 4.2.9.14. |
| The monitor uses the ECG leads meeting the requirements of AAMI; based on the ECG baseline, the peak noise ≤ 2mV | The monitor complies with the test method in EC13 Section 5.2.9.14. |

<table>
<thead>
<tr>
<th>HR</th>
<th></th>
</tr>
</thead>
</table>
| Measurement range | Neonate: 15 to 350 bpm
Pediatric: 15 to 350 bpm
Adult: 15 to 300 bpm |
| Resolution | 1 bpm |
| Precision | ±1 bpm or ±1%, whichever is greater. |
| Trigger threshold level | 200 μV (lead II) |
| Trigger indication | There will be an audible beep on every beat captured. |
| Heart Rate Averaging | The average Heart Rate is computed in line with the ANSI/AAMI EC13 Section 4.1.2.1 d) as follows:
When the last 3 R-to-R intervals > 1200 ms, compute the average of the last 4 R-to-R intervals; otherwise, compute the average of the last 12 R-to-R intervals minus the longest and shortest intervals.
The displayed Heart Rate is updated once per second. |
| Heart Rate Meter Accuracy and Response to Irregular Rhythm | When tested in accordance with the ANSI/AAMI EC13 Section 4.1.2.1 e), the indicated heart rate after a 20 second stabilization period is:
Figure 3a (Ventricular Bigeminy) -80±1 bpm
Figure 3b (Slow Alternating Ventricular Bigeminy) -60±1 bpm
Figure 3c (Rapid Alternating Ventricular Bigeminy) -120±1bpm
Figure 3d (Bi-directional Systoles) -90±2 bpm |
| Response time to heart rate changes | Meets the requirement of ANSI/AAMI EC13: Section 4.1.2.1 f).
Less than 11 sec for a step increase from 80 to 120 BPM
Less than 11 sec for a step decrease from 80 to 40 BPM |
| Response time of tachycardia alarm | When tested in accordance with ANSI/AAMI EC13 Section 4.1.2.1 g, the response time is as follows:
 Figure 4ah – range: 15.7 to 19.2s, average: 17.4s
 4a – range: 5.7 to 8.5s, average: 7.5s
 4ad – range: 3.6 to 5.1s, average: 4.2s
 Figure 4bh – range: 11.5 to 14.7s, average: 12.9s
 4b – range: 4 to 14s, average: 7.2s
 4bd – range: 6.6 to 14.5s, average: 10.5s |
| Tall T-Wave Rejection | When tested in accordance with the ANSI/AAMI EC13 Section 4.1.2.1 c), the heart rate meter will reject all T-waves with amplitudes less than 1.2 mV, 100 ms QRS, a T wave duration of 180ms and a Q-T interval of 350 ms. |
| **Pace pulse** |
| Pulse indicator | Pace pulses meeting the following conditions are marked by the PACE indicator.
| | Amplitude: ±4 to ±700 mV (3/5-lead)
| | Width: 0.1 to 2 ms
| | Rise time: 10 to 100 µs |
| Pulse rejection | When tested in accordance with the ANSI/AAMI EC13 Sections 4.1.4.1 and 4.1.4.3, the heart rate meter rejects all pulses meeting the following conditions.
| | Amplitude: ±2 to ±700 mV
| | Width: 0.1 to 2 ms
| | Rise time: 10 to 100 µs
| | Min. input slew rate: 20 V/s RTI |
| **ST segment measurement** |
| Measurement range | -2.0 to +2.0 mV |
| Precision | -0.8 to +0.8 mV: ±0.02 mV or ±10%, whichever is greater
| | Beyond this range: Undefined |
| Update period | 10 s |
A.8.2 Mortara Software Package

<table>
<thead>
<tr>
<th>Lead naming style</th>
<th>AHA, EURO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead fault</td>
<td>The lead resistance is no greater than 51 kΩ and it is in parallel with a 0.047 µF capacitor, it will not cause a lead fault condition. For 3/5-lead, differential offsets ≤±300 mV, it will not cause a lead fault condition.</td>
</tr>
<tr>
<td>Sensitivity selection</td>
<td>1.25 mm/mV (×0.125), 2.5 mm/mV (×0.25), 5 mm/mV (×0.5), 10 mm/mV (×1), 20 mm/mV (×2) and AUTO</td>
</tr>
<tr>
<td>Sweep speed</td>
<td>12.5 mm/s, 25 mm/s, 50 mm/s</td>
</tr>
</tbody>
</table>
| **Bandwidth (-3 dB)** | Diagnostic mode: 0.05 to 150 Hz (M08A module)
Monitor mode: 0.5 to 40 Hz
Surgery mode: 1 to 20 Hz |
| **Common mode rejection** | Diagnostic mode: ≥90 dB
Monitor mode: ≥105 dB
Surgery mode: ≥105 dB
(The notch filter is turned off.) |
| **50/60Hz Notch Filtering** | The monitor provides software filtering against the 50/60HZ industrial frequency.
In monitor and surgery modes, the 50/60HZ filter will be turned on automatically.
In diagnostic mode, the 50/60HZ filter will be turned off. |
| **Input offset current** | ≤0.1 µA (except currents to drive leads) |
| **Differential input impedance** | ≥5 MΩ |
| **Input signal range** | ±8 mV (peak-to-peak value) |
| **Accuracy of input signal reproduction** | Methods A and D were used to establish overall system error and frequency response according to EC11. |
| **Auxiliary current (Leads off detection)** | Active electrode: < 0.1 µA
Reference electrode: < 1 µA |
| **Patient leakage current** | < 10 µA |
| **Recovery time after defibrillation** | < 5 s |
| **Calibration signal** | 1 mV (peak-to-peak value), precision: ±5% |
| **ESU protection** | Incision mode: 300W
Congelation mode: 100W
Restore time: ≤10s
The monitor complies with the requirements of ANSI/AAMI EC13 Section 4.2.9.14. |
| **ESU noise control** | The monitor uses the ECG leads meeting the requirements of AAMI; based on the ECG baseline, the peak noise ≤2 mV
The monitor complies with the test method in EC13 Section 5.2.9.14. |
<table>
<thead>
<tr>
<th>Measurement range</th>
<th>Neonate: 15 to 350 bpm</th>
<th>Pediatric: 15 to 350 bpm</th>
<th>Adult: 15 to 300 bpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>1 bpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>±1 bpm or ±1%, whichever is greater.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger threshold level</td>
<td>200 μV (lead II)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger indication</td>
<td>There will be an audible beep on every beat captured.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart Rate Averaging</td>
<td>The average Heart Rate is computed in line with the ANSI/AAMI EC13 Section 4.1.2.1 d) as follows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The average heart rate is calculated on the basis of the mean RR-interval of the last 16 beats, unless the heart rate calculated using the last 4 beats is less than or equal to 48, then this rate is used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The displayed Heart Rate is updated once per second.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart Rate Meter Accuracy and Response to Irregular Rhythm</td>
<td>When tested in accordance with the ANSI/AAMI EC13 Section 4.1.2.1 e), the indicated heart rate after a 20 second stabilization period is:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 3a (Ventricular Bigeminy) -80±1 bpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 3b (Slow Alternating Ventricular Bigeminy) -60±1 bpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 3c (Rapid Alternating Ventricular Bigeminy) -120±1 bpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 3d (Bi-directional Systoles) -90±2 bpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response time to heart rate changes</td>
<td>Meets the requirement of ANSI/AAMI EC13: Section 4.1.2.1 f).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 11 sec for a step increase from 80 to 120 BPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 11 sec for a step decrease from 80 to 40 BPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response time of tachycardia alarm</td>
<td>When tested in accordance with ANSI/AAMI EC13 Section 4.1.2.1 g, the response time is as follows.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 4ah – range: 4.30 to 5.34s, average: 4.75s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4a – range: 3.94 to 5.92s, average: 4.69s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4ad – range: 4.28 to 5.18s, average: 4.78s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 4bh – range: 3.57 to 8.22s, average: 4.83s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4b – range: 3.09 to 4.11s, average: 3.64s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4bd – range: 3.20 to 4.52s, average: 4.09s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tall T-Wave Rejection</td>
<td>When tested in accordance with the ANSI/AAMI EC13 Section 4.1.2.1 c), the heart rate meter will reject all T-waves with amplitudes less than 1.2 mV, 100 ms QRS, a T wave duration of 180ms and a Q-T interval of 350 ms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pace pulse</td>
<td>Pace pulses meeting the following conditions are marked by the PACE indicator.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse indicator</td>
<td>Amplitude: ±4 to ±700 mV (3/5-lead)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Width: 0.1 to 2 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rise time: 10 to 100 μs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
When tested in accordance with the ANSI/AAMI EC13: Sections 4.1.4.1 and 4.1.4.3, the heart rate meter rejects all pulses meeting the following conditions.

<table>
<thead>
<tr>
<th>Pulse rejection</th>
<th>Amplitude: ±2 to ±700 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Width: 0.1 to 2 ms</td>
</tr>
<tr>
<td></td>
<td>Rise time: 10 to 100 µs</td>
</tr>
<tr>
<td></td>
<td>Min. input slew rate: 20 V/s RTI</td>
</tr>
</tbody>
</table>

ST segment measurement

<table>
<thead>
<tr>
<th>Measurement range</th>
<th>-2.0 to +2.0 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>-0.8 to +0.8 mV: ±0.02 mV or ±10%, whichever is greater</td>
</tr>
<tr>
<td></td>
<td>Beyond this range: Undefined</td>
</tr>
<tr>
<td>Update period</td>
<td>Updated every 16 valid beats</td>
</tr>
</tbody>
</table>

A.9 RESP Specifications

<table>
<thead>
<tr>
<th>Measurement technique</th>
<th>Thoracic impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>Optional: lead I and lead II; default lead II</td>
</tr>
<tr>
<td>Respiration excitation waveform</td>
<td>< 300 µA, sinusoid, 62.8 kHz (±10%)</td>
</tr>
<tr>
<td>Respiration impedance test range</td>
<td>0.3 to 3 Ω</td>
</tr>
<tr>
<td>Baseline impedance range</td>
<td>200 to 2500 Ω (using an ECG cable with 1kΩ resistance)</td>
</tr>
<tr>
<td>Differential input impedance</td>
<td>> 2.5 MΩ</td>
</tr>
<tr>
<td>Linear Signal Range</td>
<td>3 Ω p-p minimum</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>0.2 to 2 Hz (-3 dB)</td>
</tr>
<tr>
<td>Sweep speed</td>
<td>6.25 mm/s, 12.5 mm/s, 25 mm/s</td>
</tr>
</tbody>
</table>

RR

<table>
<thead>
<tr>
<th>Measurement range</th>
<th>Adult: 0 to 120 BrPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pediatric/neonate: 0 to 150 BrPM</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 BrPM</td>
</tr>
<tr>
<td>Precision</td>
<td>7 to 150 BrPM: ±2 BrPM or ±2%, whichever is greater.</td>
</tr>
<tr>
<td></td>
<td>0 to 6 BrPM: Undefined.</td>
</tr>
<tr>
<td>Apnea alarm delay</td>
<td>10 to 40 s</td>
</tr>
</tbody>
</table>
A.10 SpO₂ Specifications

A.10.1 Mindray DS SpO₂ Module

All SpO₂ sensors specified in the section *Mindray DS SpO₂ Accessories* meets the following specifications when used with Mindray DS SpO₂ module.

<table>
<thead>
<tr>
<th>SpO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
<tr>
<td>Precision</td>
</tr>
<tr>
<td>70 to 100%:</td>
</tr>
<tr>
<td>70 to 100%:</td>
</tr>
<tr>
<td>0% to 69%:</td>
</tr>
<tr>
<td>Refreshing rate</td>
</tr>
<tr>
<td>Averaging time</td>
</tr>
<tr>
<td>7 s (When the sensitivity is set to High)</td>
</tr>
<tr>
<td>9 s (When the sensitivity is set to Medium)</td>
</tr>
<tr>
<td>11 s (When the sensitivity is set to Low)</td>
</tr>
<tr>
<td>PR</td>
</tr>
<tr>
<td>Measurement range</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
<tr>
<td>Precision</td>
</tr>
<tr>
<td>Refreshing rate</td>
</tr>
</tbody>
</table>

* A study was performed to validate the accuracy of this monitor with 520N SpO₂ sensor. Totally 122 neonates (65 male & 57 female) aged from 1 day to 30 days with a gestation age of 22 weeks to full term were involved in this study. The statistical analysis of the 200 pairs of data over the range of 72% to 100% SaO₂ of this study shows that the accuracy (Arms) is 2.47 digits, which is within the stated accuracy specification. Another study performed on adult subjects also shows the effectiveness. This monitor with 520N SpO₂ sensor was validated on adult subjects (1.62% Arms) and that actual performance in the neonatal population was observed.
A.10.2 Nellcor SpO₂ Module

All SpO₂ sensors specified in the section *Nellcor SpO₂ Accessories* meets the following specifications when used with Nellcor SpO₂ module.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Range</th>
<th>Precision*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX-A, MAX-AL, MAX-N, MAX-P, MAX-I and MAX-FAST</td>
<td>70 to 100% 0% to 69%</td>
<td>±2% Undefined</td>
</tr>
<tr>
<td>OxiCliq A, OxiCliq N, OxiCliq P, OxiCliq I</td>
<td>70 to 100% 0% to 69%</td>
<td>±2.5% Undefined</td>
</tr>
<tr>
<td>D-YS, DS-100A, OXI-A/N and OXI-P/I</td>
<td>70 to 100% 0% to 69%</td>
<td>±3% Undefined</td>
</tr>
<tr>
<td>MAX-R, D-YSE and D-YS PD</td>
<td>70 to 100% 0% to 69%</td>
<td>±3.5% Undefined</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Range</th>
<th>Precision*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR measurement range and precision</td>
<td>20 to 250 bpm: ±3 bpm 251 to 300 bpm: Undefined</td>
<td></td>
</tr>
<tr>
<td>Refreshing rate</td>
<td>1 s</td>
<td></td>
</tr>
<tr>
<td>Averaging time</td>
<td>8 s, 16 s</td>
<td></td>
</tr>
</tbody>
</table>

*: When sensors are used on neonatal subjects as recommended, the specified precision range is increased by ±1%, to account for the theoretical effect on oximeter measurements of fetal hemoglobin in neonatal blood.
A.11 NIBP Specifications

<table>
<thead>
<tr>
<th>Measurement technique</th>
<th>Auto oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displayed parameters</td>
<td>Systolic pressure, diastolic pressure, mean pressure and PR</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>Manual, auto and continuous</td>
</tr>
<tr>
<td>Measurement interval in auto mode</td>
<td>1/2/3/4/5/10/15/30/60/90/120/180/240/480 minutes</td>
</tr>
<tr>
<td>Measurement time in continuous mode</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Measurement range in normal mode</td>
<td>mmHg</td>
</tr>
<tr>
<td>Systolic pressure</td>
<td>40 to 270</td>
</tr>
<tr>
<td>Diastolic pressure</td>
<td>10 to 210</td>
</tr>
<tr>
<td>Mean pressure</td>
<td>20 to 230</td>
</tr>
<tr>
<td>Measurement precision</td>
<td>Maximum average error: ±5mmHg</td>
</tr>
<tr>
<td></td>
<td>Maximum standard deviation: 8mmHg</td>
</tr>
<tr>
<td>Resolution</td>
<td>1mmHg</td>
</tr>
<tr>
<td>Static pressure measure range</td>
<td>0 to 300mmHg</td>
</tr>
<tr>
<td>Static accuracy</td>
<td>±3 mmHg</td>
</tr>
<tr>
<td>Over-pressure protection by software</td>
<td>Adult: 297±3 mmHg</td>
</tr>
<tr>
<td></td>
<td>Pediatric: 240±3 mmHg</td>
</tr>
<tr>
<td></td>
<td>Neonate: 147±3 mmHg</td>
</tr>
<tr>
<td>Over-pressure protection by hardware</td>
<td>Adult: 330 mmHg</td>
</tr>
<tr>
<td></td>
<td>Pediatric: 330 mmHg</td>
</tr>
<tr>
<td></td>
<td>Neonate: 165 mmHg</td>
</tr>
<tr>
<td>Default start pressure</td>
<td>Adult: 178±5 mmHg</td>
</tr>
<tr>
<td></td>
<td>Pediatric: 133±10 mmHg</td>
</tr>
<tr>
<td></td>
<td>Neonate: 67±5 mmHg</td>
</tr>
<tr>
<td>PR from NIBP</td>
<td></td>
</tr>
<tr>
<td>Measurement range</td>
<td>40 to 240 bpm</td>
</tr>
<tr>
<td>Precision</td>
<td>±3 bpm or ±3%, whichever is greater</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 bpm</td>
</tr>
</tbody>
</table>
A.12 TEMP Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of channels</td>
<td>2</td>
</tr>
<tr>
<td>Displayed parameters</td>
<td>T1, T2 and TD</td>
</tr>
<tr>
<td>Measurement range</td>
<td>0 to 50°C (32 to 122°F)</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1°C</td>
</tr>
<tr>
<td>Precision</td>
<td>±0.1°C (excluding the sensor)</td>
</tr>
<tr>
<td></td>
<td>±0.2°C (including the YSI 400 series sensor)</td>
</tr>
<tr>
<td>Update period</td>
<td>1s</td>
</tr>
<tr>
<td>Minimum time for accurate measurement</td>
<td>Body surface: < 100s</td>
</tr>
<tr>
<td></td>
<td>Body cavity: < 80s</td>
</tr>
<tr>
<td></td>
<td>(YSI 400 series sensor)</td>
</tr>
</tbody>
</table>

A.13 IBP Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of channels</td>
<td>2</td>
</tr>
<tr>
<td>Pressure readings</td>
<td>Systolic, diastolic, mean pressures and PR</td>
</tr>
<tr>
<td>Pressure labels</td>
<td>ART, PA, CVP, RAP, LAP, ICP, P1 and P2</td>
</tr>
<tr>
<td>Linear input range</td>
<td>will be -50 to + 300 mmHg, after zeroing.</td>
</tr>
<tr>
<td>Measurement range</td>
<td>ART</td>
</tr>
<tr>
<td></td>
<td>0 to 300 mmHg</td>
</tr>
<tr>
<td></td>
<td>PA</td>
</tr>
<tr>
<td></td>
<td>-6 to 120 mmHg</td>
</tr>
<tr>
<td></td>
<td>CVP/RAP/LAP/ICP</td>
</tr>
<tr>
<td></td>
<td>-10 to 40 mmHg</td>
</tr>
<tr>
<td></td>
<td>P1/P2</td>
</tr>
<tr>
<td></td>
<td>-50 to 300 mmHg</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 mmHg</td>
</tr>
<tr>
<td>Precision</td>
<td>±2% or ±1 mmHg, whichever is greater</td>
</tr>
<tr>
<td>Excitation</td>
<td>will be 5 Volts DC, ± 2%</td>
</tr>
<tr>
<td></td>
<td>Minimum load resistance will be 300Ω per transducer.</td>
</tr>
<tr>
<td>Update period</td>
<td>1s</td>
</tr>
<tr>
<td>Zero offset range</td>
<td>± 200 mmHg</td>
</tr>
<tr>
<td>Zero accuracy</td>
<td>± 1 mmHg</td>
</tr>
<tr>
<td>Noise</td>
<td><0.5 mmHg RTI, DC to 12.5 Hz, 300Ω source impedance.</td>
</tr>
<tr>
<td>Drift</td>
<td><0.15 mmHg/°C; will not exceed ± 1 mmHg in 24 hours.</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>DC-12.5Hz ±1 Hz, -3db</td>
</tr>
</tbody>
</table>

PR from IBP

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
<td>25 to 350 bpm</td>
</tr>
<tr>
<td>Precision</td>
<td>±1 or ±1%, whichever is greater.</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 bpm</td>
</tr>
</tbody>
</table>
Pressure transducer

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Excitement voltage</td>
<td>5 VDC, ±2%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>5 uV/V/mmHg</td>
</tr>
<tr>
<td>Impedance range</td>
<td>300 to 3000Ω</td>
</tr>
<tr>
<td>Volume displacement</td>
<td><0.04 mm³ /100 mmHg</td>
</tr>
</tbody>
</table>

A.14 CO₂ Specifications

<table>
<thead>
<tr>
<th>Measurement technique</th>
<th>Infrared absorption technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displayed parameter</td>
<td>EtCO₂, FiCO₂, Respiration Rate</td>
</tr>
<tr>
<td>CO₂ function</td>
<td>Meet the requirements of EN ISO 21647/ISO 21647 and ISO9918.</td>
</tr>
</tbody>
</table>

A.14.1 Mindray DS CO₂ Specifications

<table>
<thead>
<tr>
<th>CO₂ measurement range</th>
<th>0 to 99 mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision*</td>
<td></td>
</tr>
<tr>
<td>0 to 40 mmHg:</td>
<td>±2 mmHg</td>
</tr>
<tr>
<td>41 to 76 mmHg:</td>
<td>±5%</td>
</tr>
<tr>
<td>77 to 99 mmHg:</td>
<td>±10%</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 mmHg</td>
</tr>
<tr>
<td>Drift</td>
<td>meet the requirement of accuracy in 6 hours</td>
</tr>
<tr>
<td>Sample flow rate</td>
<td>70, 100 ml/min</td>
</tr>
<tr>
<td>Precision of deflation rate</td>
<td>±15% or 15 ml/min, whichever is great</td>
</tr>
<tr>
<td>Start-up time of CO₂ module</td>
<td>< 1min, the module enters the warming up status after the startup. One minute later, it enters the ready-to-measure status.</td>
</tr>
<tr>
<td>AwRR measurement range</td>
<td>0 to 120 BrPM</td>
</tr>
<tr>
<td>Precision</td>
<td></td>
</tr>
<tr>
<td>0 to 70 BrPM:</td>
<td>±2 BrPM</td>
</tr>
<tr>
<td>> 70 BrPM:</td>
<td>±5 BrPM</td>
</tr>
<tr>
<td>Response time</td>
<td>When measured with a neonatal watertrap and a 2.5 m-long neonatal sampling line:</td>
</tr>
<tr>
<td></td>
<td>3.5 s @ 100 ml/min</td>
</tr>
<tr>
<td></td>
<td>4 s @ 70 ml/min</td>
</tr>
<tr>
<td></td>
<td>When measured with an adult watertrap and a 2.5 m-long adult sampling line:</td>
</tr>
<tr>
<td></td>
<td>5.5 s @ 100 ml/min</td>
</tr>
<tr>
<td></td>
<td>7 s @ 70 ml/min</td>
</tr>
<tr>
<td>Delay time</td>
<td>When measured with a neonatal watertrap and a 2.5 m-long neonatal sampling line:</td>
</tr>
<tr>
<td></td>
<td>3 s @ 100 ml/min</td>
</tr>
</tbody>
</table>
<3.5 s @ 70 ml/min
When measured with an adult watertrap and a 2.5m-long adult sampling line:
<5 s @ 100 ml/min
<6.5 s @ 70 ml/min

Apnea alarm delay AwRR: 10 to 40 s

* Conditions for measurements in typical precision:
The measurement is started after the preheating mode of the module;
Ambient pressure: 750 mmHg to 760 mmHg; room temperature: 22°C to 28°C;
The gas under test is dry, and the balance gas is N2;
The deflation rate is 100 ml/min, the respiration rate is no greater than 50 BrPM, with a fluctuation less than ±3 BrPM, and the inhale interval/exhale interval is 1:2;
When the working temperature is from 15 to 25 degree, or from 50 to 55 degree, or when the breath rate is greater than 50Brpm, the measurement precision should meet the requirements of ISO21647: ±4mmHg (0 to 40mmHg) or ±12% of the reading (41 to 99 mmHg)

A.14.2 Oridion CO2 Specifications

<table>
<thead>
<tr>
<th>CO2 measurement range</th>
<th>0 to 99mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision* 0 to 38 mmHg:</td>
<td>±2 mmHg</td>
</tr>
<tr>
<td>39 to 99 mmHg:</td>
<td>±5% + 0.08% × (reading - 38 mmHg)</td>
</tr>
<tr>
<td>Drift</td>
<td>meet the requirement of accurancy in 6 hours</td>
</tr>
<tr>
<td>Resolution Waveform:</td>
<td>0.1 mmHg</td>
</tr>
<tr>
<td>Value:</td>
<td>1 mmHg</td>
</tr>
<tr>
<td>Sample flow rate</td>
<td>50−7.5+15 ml/min</td>
</tr>
<tr>
<td>Initialization time</td>
<td>30 s (typical)</td>
</tr>
<tr>
<td>Response time</td>
<td>2.9 s (typical)</td>
</tr>
<tr>
<td>Delay time</td>
<td>2.7 s (typical)</td>
</tr>
<tr>
<td>AwRR measurement range</td>
<td>0 to 150 BrPM</td>
</tr>
</tbody>
</table>

AwRR measurement precision 0 to 70 BrPM:	±1 BrPM
71 to 120 BrPM:	±2 BrPM
121 to 150 BrPM:	±3 BrPM
Apnea alarm delay	AwRR: 10 to 40 s

* Precision applies for breath rates of up to 80 bpm. For breath rates above 80 bpm, accuracy complies with EN ISO 21647/ISO 21647/ISO 9918 (4 mmHg or ±12% of reading whichever is greater) for EtCO2 values exceeding 18 mmHg. To achieve the specified accuracies for breath rates above 60 breaths/minute, the Microstream® FilterLine H Set for Infant/Neonatal (p/n 006324) must be used. The accuracy specification is maintained to within 4% of the values indicated in the above table in the presence of interfering gases according to EN ISO 21647/ISO 21647 Section Eleven, Part 101.
The equipment meets the requirements of EN 60601-1-2.

NOTE

- Use of accessories, transducers, and cables other than those specified may result in increased emission and/or decreased immunity of the equipment.
- The equipment should not be used adjacent to or stacked with other equipment, and if adjacent or stacked use is necessary, the equipment should be observed to verify normal operation in the configuration in which it will be used.
- The equipment needs special precautions regarding EMC and needs to be installed and put into service according to the EMC information provided below.
- The equipment may be interfered with by other equipment, even if that other equipment complies with CISPR emission requirements.
- Operation of the device, in the case that the patient physiological signal is lower than the minimum amplitude and/or value specified in the product specifications, may cause inaccurate results.

TABLE 1

| Guidance and declaration — electromagnetic emissions |
|---|---|---|
| The equipment is intended for use in the electromagnetic environment specified below. The customer or the user of the equipment should assure that it is used in such an environment. |

<table>
<thead>
<tr>
<th>Emissions test</th>
<th>Compliance</th>
<th>Electromagnetic environment — guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF emissions CISPR 11</td>
<td>Group1</td>
<td>The equipment uses RF energy only for its internal function. Therefore, its RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.</td>
</tr>
<tr>
<td>RF emissions CISPR 11</td>
<td>Class A</td>
<td>The equipment is suitable for use in all establishments other than domestic and those directly connected to the public low-voltage power supply network that supplies buildings used for domestic purposes.</td>
</tr>
<tr>
<td>Harmonic Emissions IEC61000-3-2</td>
<td>Class A</td>
<td></td>
</tr>
<tr>
<td>Voltage Fluctuations/Flicker Emissions IEC 61000-3-3</td>
<td>Compliance P_{st}, T_{st} (ms) D_{max} (%) D_{c} (%)</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2

Guidance and declaration — electromagnetic immunity

The equipment is intended for use in the electromagnetic environment specified below. The customer or the user of the equipment should assure that it is used in such an environment.

<table>
<thead>
<tr>
<th>Immunity test</th>
<th>IEC 60601 Test level</th>
<th>Compliance level</th>
<th>Electromagnetic environment — guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic Discharge (ESD)</td>
<td>±6 kV contact ±8 kV air</td>
<td>±6 kV contact ±8 kV air</td>
<td>Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.</td>
</tr>
<tr>
<td>IEC 61000-4-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical fast Transient/burst</td>
<td>±2 kV for power supply lines ±1 kV for input/output lines (>3m).</td>
<td>±2 kV for power supply lines ±1 kV for input/output lines (>3m)</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>IEC 61000-4-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surge IEC 61000-4-5</td>
<td>±1 kV differential mode +2 kV common mode</td>
<td>±1 kV differential mode +2 kV common mode</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>Voltage dips, Short interruptions and voltage variation on power supply input lines IEC 61000-4-11</td>
<td><5% U_T (>95% dip in U_T) for 0.5 cycle 40% U_T (60% dip in U_T) for 5 cycle 70% U_T (30% dip in U_T) for 25 cycle <5% U_T (>95% dip in U_T) for 5 sec</td>
<td><5% U_T (>95% dip in U_T) for 0.5 cycle 40% U_T (60% dip in U_T) for 5 cycle 70% U_T (30% dip in U_T) for 25 cycle <5% U_T (>95% dip in U_T) for 5 sec</td>
<td>Mains power quality should be that of a typical commercial or hospital environment. If the user of our product requires continued operation during power mains interruptions, it is recommended that our product be powered from an uninterruptible power supply or a battery.</td>
</tr>
<tr>
<td>Power frequency (50/60 Hz) magnetic field IEC 61000-4-8</td>
<td>3 A/m</td>
<td>3 A/m</td>
<td>Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment.</td>
</tr>
</tbody>
</table>

U_T is the A.C. mains voltage prior to application of the test level.
TABLE 3

Guidance and declaration — electromagnetic immunity

The equipment is intended for use in the electromagnetic environment specified below. The customer or the user of the equipment should assure that it is used in such an environment.

<table>
<thead>
<tr>
<th>Immunity test</th>
<th>IEC 60601 Test level</th>
<th>Compliance level</th>
<th>Electromagnetic environment — guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduced RF IEC 61000-4-6</td>
<td>3 Vrms 150kHz to 80MHz</td>
<td>3 Vrms</td>
<td>Portable and mobile RF communications equipment should be used no closer to any part of the equipment, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter. Recommended separation distance[d = 1.2 \times \sqrt{P}] where (P) is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer and (d) is the recommended separation distance in meters (m). Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey, should be less than the compliance level in each frequency range. Interference may occur in the vicinity of equipment marked with the following symbol: ![Symbol].</td>
</tr>
<tr>
<td>Radiated RF IEC 61000-4-3</td>
<td>3 V/m 80MHz to 2.5GHz</td>
<td>3V/m</td>
<td>Note — At 80 MHz and 800 MHz, the higher frequency range applies. Note — These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.</td>
</tr>
</tbody>
</table>

\(a\) Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the equipment is used exceeds the applicable RF compliance level above, the equipment should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as reorienting or relocating the equipment. \(b\) Over the frequency ranges 150kHz to 80MHz, field strengths should be less than 3V/m.
TABLE 4

Recommended separation distances between portable and mobile RF communication and the equipment

The equipment is intended for use in an electromagnetic environment in which radiated RF disturbance are controlled. The customer or the user of the equipment can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communication equipment (transmitters) and the equipment as recommended below, according to the maximum output power of the communication equipment.

<table>
<thead>
<tr>
<th>Rated Maximum Output power of Transmitter W (Watts)</th>
<th>Separation Distance According to Frequency of Transmitter M (Meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150kHz -80MHz</td>
<td>80MHz -800MHz</td>
</tr>
<tr>
<td>$d = 1.2\sqrt{P}$</td>
<td>$d = 1.2\sqrt{P}$</td>
</tr>
<tr>
<td>0.01</td>
<td>0.12</td>
</tr>
<tr>
<td>0.1</td>
<td>0.37</td>
</tr>
<tr>
<td>1</td>
<td>1.17</td>
</tr>
<tr>
<td>10</td>
<td>3.69</td>
</tr>
<tr>
<td>100</td>
<td>11.67</td>
</tr>
</tbody>
</table>

For transmitters at a maximum output power not listed above, the recommended separation distance in meters (m) can be determined using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

Note — At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

Note — These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.
C Alarm Messages and Prompt Information

NOTE

- Your patient monitor may not include all the information listed in this section.

C.1 Physiological Alarm Messages

Note: XX represents the parameters being monitored, such as HR, RR, SpO₂, etc. The “L” field indicates the alarm level, and 1 means high, 2 means medium, 3 mean low, * means the level is user-adjustable.

<table>
<thead>
<tr>
<th>Alarm messages</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX TOO HIGH</td>
<td>2*</td>
<td>XX value exceeds the upper alarm limit.</td>
<td>Make sure the alarm limits are appropriate</td>
</tr>
<tr>
<td>XX TOO LOW</td>
<td>2*</td>
<td>XX value exceeds the lower alarm limit.</td>
<td>for the patient, and check the patient’s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>condition.</td>
</tr>
<tr>
<td>ECG LOST</td>
<td>1</td>
<td>The ECG signal is so weak that the monitor can’t perform ECG analysis.</td>
<td>Check the connection of the patient cable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and lead wires, and then check the patient’s</td>
</tr>
<tr>
<td>RESP ARTIFACT</td>
<td>1</td>
<td>The patient’s heartbeat interferes with his respiration. The respiration rate cannot be measured correctly.</td>
<td>condition.</td>
</tr>
<tr>
<td>NO PULSE</td>
<td>1</td>
<td>The pulse signal of the patient is so weak that the monitor cannot perform pulse analysis.</td>
<td></td>
</tr>
<tr>
<td>CO₂ APNEA</td>
<td>1</td>
<td>No respiration signal is detect or the respiration signal of the patient is so weak that the monitor cannot perform respiration analysis.</td>
<td></td>
</tr>
<tr>
<td>RESP APNEA</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASYSTOLE</td>
<td>1*</td>
<td>The asystole arrhythmia event occurs to the patient.</td>
<td></td>
</tr>
<tr>
<td>VFIB/VTAC</td>
<td>1*</td>
<td>The ventricular tachycardia or ventricular fibrillation arrhythmia event occurs to the patient.</td>
<td></td>
</tr>
<tr>
<td>R ON T</td>
<td>2*</td>
<td>The R ON T arrhythmia event occurs to the patient.</td>
<td></td>
</tr>
<tr>
<td>VT > 2</td>
<td>2*</td>
<td>The VT>2 arrhythmia event occurs to the patient.</td>
<td></td>
</tr>
<tr>
<td>COUPLEΤ</td>
<td>2*</td>
<td>The couplet arrhythmia event occurs to the patient.</td>
<td></td>
</tr>
<tr>
<td>PVC</td>
<td>2*</td>
<td>The PVC arrhythmia event occurs to the patient.</td>
<td></td>
</tr>
<tr>
<td>BIGEMINY</td>
<td>2*</td>
<td>The bigeminy arrhythmia event occurs to the patient.</td>
<td></td>
</tr>
</tbody>
</table>
C.2 Technical Alarm Messages

Note: XX represents the parameter modules like ECG, NIBP and SpO2, or the parameters being monitored like HR, PR and SpO2.

The A field indicates whether an alarm can be completely cleared; the B field indicates whether only visual and audible indications of an alarm can be cleared; the “L” field indicates the alarm level, and 1 means high, 2 means medium, 3 mean low, * means the level is user-adjustable.

C.2.1 General Alarm Messages of Parameter Modules

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX INIT ERR N</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>XX module initialization error N</td>
<td>Restart the monitor. If the error remains, contact our company for repair.</td>
</tr>
<tr>
<td>XX COMM STOP</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>Failure in communication between XX module and the main board.</td>
<td></td>
</tr>
<tr>
<td>XX COMM ERR</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>Error in communication between XX module and the main board.</td>
<td></td>
</tr>
<tr>
<td>XX COMM ABNORMAL</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The communication between XX module and the main board is abnormal.</td>
<td></td>
</tr>
<tr>
<td>XX ALM LMT ERR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The alarm limit of the XX parameter is changed inadvertently.</td>
<td>If the error remains, contact our company for repair.</td>
</tr>
<tr>
<td>XX EXCEED</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The measured XX parameter value exceeds the measurement range.</td>
<td></td>
</tr>
</tbody>
</table>
C.2.2 ECG Module Alarm Messages

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG LEAD OFF</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>The ECG lead is not connected correctly.</td>
<td>Check for correct connection of the leadwires.</td>
</tr>
<tr>
<td>ECG X LEAD OFF</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>The ECG lead is not connected correctly.</td>
<td>Make sure the leadwires are correctly connected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note: X represents the leadwires, V, LL, RL, LA and RA, as per AHA standard, or C, L, F, R and N as per IEC standard.</td>
<td></td>
</tr>
<tr>
<td>ECG NOISE</td>
<td>No</td>
<td>No</td>
<td>3</td>
<td>Large interference signals appear on the ECG signal.</td>
<td></td>
</tr>
<tr>
<td>ECG CH1 SELFTEST ERR</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>An error occurs in the ECG initialization.</td>
<td>Restart the monitor. If the error remains, contact our company for repair.</td>
</tr>
<tr>
<td>ARTIFACT</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>Artifacts are detected on analysis lead, resulting in HR unable to be calculated, asystole, missed beats and ventricular fibrillation unable to be analyzed.</td>
<td>Check the connection between the electrode and the lead wire; check if there is an interference source near the electrode and the lead wire; check if the patient makes excessive motion.</td>
</tr>
<tr>
<td>HIGH FREQUENCY NOISE</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>The monitor is interfered by electromagnetic signals emitted by other radio equipment</td>
<td>Check if other radio equipment is located nearby.</td>
</tr>
<tr>
<td>LOW FREQUENCY NOISE</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>The ECG signal is too weak to be detected.</td>
<td>Select a lead with better ECG signal output. Check the placement of the electrode or replace the leadwire.</td>
</tr>
</tbody>
</table>

C.2.3 RESP Module Alarm Messages

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESP DISTURBED</td>
<td>No</td>
<td>No</td>
<td>3</td>
<td>The module circuit is disturbed.</td>
<td>If the problem occurs continuously, restart the monitor. If it still exits, contact our company for repair.</td>
</tr>
<tr>
<td>RR EXCEED</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The circuit is disturbed and the measurement is inaccurate.</td>
<td></td>
</tr>
</tbody>
</table>
C.2.4 TEMP Module Alarm Messages

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP1 SENSOR OFF</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>The T1 sensor is not connected correctly to the patient or the monitor.</td>
<td>Check for correct connection of the T1 sensor.</td>
</tr>
<tr>
<td>TEMP2 SENSOR OFF</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>The T2 sensor is not connected correctly to the patient or the monitor.</td>
<td>Check for correct connection of the T2 sensor.</td>
</tr>
<tr>
<td>TEMP SELFTEST ERROR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>Circuit fault of the temperature channel.</td>
<td>Contact our company for repair.</td>
</tr>
<tr>
<td>TEMP CALIBRATION ERR</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>Error in temperature channel calibration.</td>
<td>Restart the monitor. If the error remains, contact our company for repair.</td>
</tr>
</tbody>
</table>

C.2.5 NIBP Module Alarm Messages

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIBP SELFTEST ERR</td>
<td>Yes</td>
<td>Yes</td>
<td>1</td>
<td>Error in NIBP initialization.</td>
<td>Select RESET from the NIBP SETUP menu. If the error remains, contact our company for repair.</td>
</tr>
<tr>
<td>LOOSE CUFF</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>The NIBP cuff is not properly connected.</td>
<td>Check the patient’s condition, and check if the patient type is correct. Replace with a proper cuff and connect it correctly. If the problem still exists, contact our company for repair.</td>
</tr>
<tr>
<td>AIR LEAK</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>Leak in the airway.</td>
<td></td>
</tr>
<tr>
<td>PNEUMATIC LEAK</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUFF TYPE ERR</td>
<td>No</td>
<td>Yes</td>
<td>2</td>
<td>The cuff applied is not appropriate to the patient type.</td>
<td></td>
</tr>
<tr>
<td>AIR PRESSURE ERROR</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>Failure occurs in the pulse measurement. The monitor cannot perform measurement, analysis, or calculation.</td>
<td></td>
</tr>
<tr>
<td>WEAK SIGNAL</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGNAL SATUATED</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANGE EXCEEDED</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXCESSIVE MOTION</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>Excessive motion of the patient’s arms.</td>
<td></td>
</tr>
<tr>
<td>OVER PRESSURE</td>
<td>No</td>
<td>Yes</td>
<td>2</td>
<td>The airway might be blocked.</td>
<td></td>
</tr>
</tbody>
</table>
C.2.6 Mindray DS SpO₂ Module Alarm Messages

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPO2 SENSOR OFF</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>The sensor is disconnected from the patient or the monitor.</td>
<td>Make sure the sensor is placed on the patient’s finger or other parts, and the monitor is connected to cables correctly.</td>
</tr>
<tr>
<td>SPO2 NO SENSOR</td>
<td>Yes</td>
<td>Yes</td>
<td>3</td>
<td>The sensor is disconnected from the patient or the monitor, or it is not properly connected.</td>
<td>Disconnect and reconnect the sensor as directed by the instructions. If the alarm remains, the sensor or the cable might have been damaged.</td>
</tr>
<tr>
<td>SPO2 LOW PERFUSION</td>
<td>No</td>
<td>No</td>
<td>3</td>
<td>The pulse signal is too weak.</td>
<td>Move the sensor to a site with better perfusion.</td>
</tr>
<tr>
<td>NIBP SYSTEM FAILURE</td>
<td>No</td>
<td>Yes</td>
<td>2</td>
<td>Failure occurs in the pulse measurement. The monitor cannot perform measurement, analysis, or calculation.</td>
<td>repair.</td>
</tr>
<tr>
<td>NIBP TIME OUT</td>
<td>No</td>
<td>Yes</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEASURE FAIL</td>
<td>No</td>
<td>Yes</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIBP ILLEGALLY RESET</td>
<td>No</td>
<td>Yes</td>
<td>2</td>
<td>Illegal reset comes out during the NIBP measurement.</td>
<td>Check if the airway is blocked. Deal with the blocking and perform the measurement again. If the problem still exists, contact our company for repair.</td>
</tr>
</tbody>
</table>
C.2.7 Nellcor SpO2 Module Alarm Messages

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPO2 SENSOR OFF</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>The sensor is disconnected from the patient or the monitor.</td>
<td>Make sure the sensor is placed on the patient’s finger or other parts, and the monitor is connected to cables correctly.</td>
</tr>
<tr>
<td>SPO2 NO SENSOR</td>
<td>Yes</td>
<td>Yes</td>
<td>3</td>
<td>The sensor is disconnected from the patient or the monitor, or the sensor is not connected properly.</td>
<td>Disconnect and reconnect the sensor as directed by the instructions. If the alarm remains, the sensor or the cable might have been damaged. The SpO2 probe is inserted upside down. Disconnect and reconnect the sensor as directed by the instructions. Pay attention to the mark on the probe.</td>
</tr>
<tr>
<td>SPO2 INTERFERENCE</td>
<td>No</td>
<td>No</td>
<td>3</td>
<td>The pulse signals are subject to great external interference.</td>
<td>Reduce or remove external interference.</td>
</tr>
<tr>
<td>SPO2 BOARD FAULT</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The SpO2 set board malfunctions and might be unable to measure the pulse signals correctly.</td>
<td>Stop using the SpO2 module, and contact biomedical engineers or our company for maintenance.</td>
</tr>
<tr>
<td>SPO2 MOTION</td>
<td>No</td>
<td>No</td>
<td>3</td>
<td>The patient is moving.</td>
<td>Reduce patient motion.</td>
</tr>
<tr>
<td>SPO2 SENSOR FAULT</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The probe is damaged.</td>
<td>Stop using the sensor.</td>
</tr>
<tr>
<td>SPO2 WEAK SIGNAL</td>
<td>No</td>
<td>No</td>
<td>3</td>
<td>The SpO2 signal is weak.</td>
<td>Change the sensor site for better signals.</td>
</tr>
<tr>
<td>SPO2 WEAK PULSE</td>
<td>No</td>
<td>No</td>
<td>3</td>
<td>The detected pulse signal is too weak.</td>
<td></td>
</tr>
</tbody>
</table>
C.2.8 IBP Module Alarm Messages

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBP1 SENSOR OFF</td>
<td></td>
<td>Yes</td>
<td>3</td>
<td>The invasive blood pressure cable of channel 1 is disconnected from the monitor.</td>
<td>Check if the IBP 1 sensor is properly connected.</td>
</tr>
<tr>
<td>IBP2 SENSOR OFF</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>The invasive blood pressure cable of channel 2 is disconnected from the monitor.</td>
<td>Check if the IBP 2 sensor is properly connected.</td>
</tr>
<tr>
<td>IBP1 NEED ZERO-CAL</td>
<td>No</td>
<td>No</td>
<td>3</td>
<td>The IBP transducer of channel 1 has not been zeroed.</td>
<td>Zero the IBP transducer of channel 1.</td>
</tr>
<tr>
<td>IBP2 NEED ZERO-CAL</td>
<td>No</td>
<td>No</td>
<td>3</td>
<td>The IBP transducer of channel 2 has not been zeroed.</td>
<td>Zero the IBP transducer of channel 2.</td>
</tr>
</tbody>
</table>

C.2.9 CO Module Alarm Messages

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB SENSOR OFF</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>The cable for blood pressure measurement is disconnected from the monitor.</td>
<td>Check for proper connection of TB cable.</td>
</tr>
</tbody>
</table>

C.2.10 Mindray DS CO₂ Module Alarm Messages

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 NO WATERTRAP</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>The water trap is not properly connected or is disconnected.</td>
<td>Make sure the sidestream CO₂ water trap is firmly connected.</td>
</tr>
<tr>
<td>CO2 SENSOR TEMP HIGH</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The temperature of the sensor assembly is too high.</td>
<td>Restart the monitor if necessary. If the problem remains, contact our company for repair.</td>
</tr>
<tr>
<td>CO2 SENSOR TEMP LOW</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The temperature of the sensor assembly is too low.</td>
<td></td>
</tr>
<tr>
<td>CO2 AIRWAY PRES TOO HIGH</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>The pressure inside the airway is too high.</td>
<td></td>
</tr>
<tr>
<td>CO2 AIRWAY PRES TOO LOW</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>The pressure inside the airway is too low.</td>
<td></td>
</tr>
<tr>
<td>CO2 BAROMETRIC TOO HIGH</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>The barometric pressure is too high.</td>
<td></td>
</tr>
<tr>
<td>Alarm message</td>
<td>A</td>
<td>B</td>
<td>L</td>
<td>Cause</td>
<td>Measure</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>CO2 BAROMETRIC TOO LOW</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>The barometric pressure is too low.</td>
<td></td>
</tr>
<tr>
<td>CO2 HARDWARE ERROR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>AD sampling 2.5V error</td>
<td></td>
</tr>
<tr>
<td>CO2 HARDWARE ERROR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The pump malfunctions.</td>
<td></td>
</tr>
<tr>
<td>CO2 HARDWARE ERROR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The 3-way stopcock malfunctions.</td>
<td></td>
</tr>
<tr>
<td>CO2 SAMPLE LINE ABNORMAL</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>The sample line is abnormal or blocked.</td>
<td>Make sure the airway is not blocked. If the problem still exists, contact our company for repair.</td>
</tr>
<tr>
<td>CO2 CALIBRATE ZERO ERROR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>Zeroing failure.</td>
<td>Restart the monitor. If the problem still exists, contact our company for repair.</td>
</tr>
<tr>
<td>CO2 USER CALIBRATE FAIL</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>User calibration failure.</td>
<td>Make sure the preset calibration gas concentration consists with the input calibration gas. If the problem remains, contact our company for repair.</td>
</tr>
<tr>
<td>CO2 SYSTEM ERROR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>EEPROM reading address error.</td>
<td>Contact our company for repair.</td>
</tr>
<tr>
<td>CO2 SYSTEM ERROR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>EEPROM reading length error.</td>
<td></td>
</tr>
<tr>
<td>CO2 SYSTEM ERROR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>EEPROM response to component error.</td>
<td></td>
</tr>
<tr>
<td>CO2 SYSTEM ERROR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>EEPROM checksum error.</td>
<td></td>
</tr>
<tr>
<td>CO2 SYSTEM ERROR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>External AD sample line error.</td>
<td></td>
</tr>
<tr>
<td>CO2 SYSTEM ERROR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>Internal AD sample line error.</td>
<td></td>
</tr>
<tr>
<td>CO2 SYSTEM ERROR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>Self-test error</td>
<td></td>
</tr>
<tr>
<td>CO2 COMM ERROR</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>CO2 module communication fault.</td>
<td>Restart the monitor. If the problem still exists, contact our company for repair.</td>
</tr>
<tr>
<td>CO2 INIT ERR</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>The CO2 module is not properly installed, or malfunctions.</td>
<td></td>
</tr>
</tbody>
</table>
C.2.11 Oridion CO₂ Module Alarm Messages

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 COMM STOP</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>CO2 module fault or communication fault.</td>
<td></td>
</tr>
<tr>
<td>CO2 CHECK CALIBRATION</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>Calibration error</td>
<td>Make sure the calibration gas is proper.</td>
</tr>
<tr>
<td>CO2 CHECK FLOW</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>Airway error</td>
<td>Check for leaks in the airway.</td>
</tr>
<tr>
<td>CO2 OCCLU. IN GAS LINE</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>The sampling airway has been occluded for a period of time.</td>
<td></td>
</tr>
<tr>
<td>CO2 FILTERLINE OFF</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>The filter Line cannot be detected.</td>
<td>Check if the filter line is properly connected.</td>
</tr>
<tr>
<td>CO2 OVER RANGE</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>The CO₂ concentration value exceeds the measurement range.</td>
<td>Check the input gas.</td>
</tr>
<tr>
<td>CO2 REPLACE MAIN BOARD</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>CO₂ module fault.</td>
<td>Contact our company.</td>
</tr>
<tr>
<td>CO2 CHECK SENSOR OR PCB</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 REPL SCRUBBER+PUMP</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 CHANGE SENSOR</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 15VOLT OUT OF RANGE</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 TEMP OVERRANGE</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The temperature of CO₂ module overranges.</td>
<td>Restart the monitor if necessary. If the problem remains, contact our company for repair.</td>
</tr>
<tr>
<td>CO2 CALIB ERROR</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>Including the error messages displayed at the lower part of the menu (like gas error, measurement error, zeroing failure, etc.)</td>
<td>Take measures specific to the errors. For instance, in case of a gas error, check if the gas concentration is wrong. A measurement error indicates the module is removing the occlusion or the filter line is not connected properly.</td>
</tr>
<tr>
<td>CO2 INIT ERR</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>An error occurs during the CO2 initialization.</td>
<td>Restart the monitor. If the error remains, contact our company</td>
</tr>
<tr>
<td>Alarm message</td>
<td>A</td>
<td>B</td>
<td>L</td>
<td>Cause</td>
<td>Measure</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>--</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>CO2 COMM STOP</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>Failure in communication between the CO2 module and the main board.</td>
<td>for repair.</td>
</tr>
<tr>
<td>CO2 COMM ERR</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>Error in communication between the CO2 module and the main board.</td>
<td></td>
</tr>
</tbody>
</table>

C.2.12 AG Module Alarm Messages

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG SENSOR OFF</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>The AG sensor is not properly connected or is disconnected.</td>
<td>Make sure the AG sensor is properly connected.</td>
</tr>
<tr>
<td>AG NO WATERTRAP</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
<td>The AG water trap is disconnected from the monitor.</td>
<td>Make sure the water trap is properly connected.</td>
</tr>
<tr>
<td>CHANGE AG WATERTRAP</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td>The AG water trap is replaced.</td>
<td>Wait until the water trap has been changed.</td>
</tr>
<tr>
<td>AG WATERTRAP TYPE WRONG</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td>The AG water trap is of a wrong type.</td>
<td>Replace with a water trap of a correct type.</td>
</tr>
<tr>
<td>AG USA ERROR</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td>AG module fault.</td>
<td>Contact us to get rid of the fault.</td>
</tr>
<tr>
<td>AG PARAMAGNETIC O2 ERR</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td>O₂ module fault.</td>
<td>Contact us to get rid of the fault.</td>
</tr>
<tr>
<td>AG GALVANIC O2 ERROR</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG OXIMA DEPLETION WARN</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG OXIMA DEPLETION ERR</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG OCCLUSION</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>The actual pump rate of the AG module is <20ml/min, which exceeds 1 second.</td>
<td>Remove the block of the airway.</td>
</tr>
<tr>
<td>AG SELF-TEST ERR</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>AG module fails or fails to communicate with the host.</td>
<td>Unplug and re-plug the module and then restart the monitor, or plug the AG module in another monitor to check if it operates properly.</td>
</tr>
<tr>
<td>AG HARDWARE MALF</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>AG module hardware failure. The module enters the standby</td>
<td>Remove the AG module from the monitor and send for authorized</td>
</tr>
<tr>
<td>Error Description</td>
<td>Action 1</td>
<td>Action 2</td>
<td>Condition</td>
<td>Description</td>
<td>Action 3</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>AG HARDWARE ERROR</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td>AG module hardware fault. The module remains AG monitoring.</td>
<td>Unplug and re-plug the module and then restart the monitor.</td>
</tr>
<tr>
<td>AG DATA LIMIT ERROR</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td>AG module fault.</td>
<td></td>
</tr>
<tr>
<td>AG ZREF FAIL</td>
<td>Yes</td>
<td>No</td>
<td>3</td>
<td>Failure in AG module zeroing.</td>
<td></td>
</tr>
<tr>
<td>AG CAL FAIL</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>Failure in AG module calibration.</td>
<td></td>
</tr>
<tr>
<td>CO2 ACCURACY UNSEPCIFIED</td>
<td>Yes</td>
<td>No</td>
<td>3</td>
<td>The measurement is out of specified range at specified accuracy.</td>
<td>Check that appropriate gas is used and the clinical environment is stable.</td>
</tr>
<tr>
<td>N2O ACCURACY UNSEPCIFIED</td>
<td>Yes</td>
<td>No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2 ACCURACY UNSEPCIFIED</td>
<td>Yes</td>
<td>No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAL ACCURACY UNSEPCIFIED</td>
<td>Yes</td>
<td>No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENF ACCURACY UNSEPCIFIED</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO ACCURACY UNSEPCIFIED</td>
<td>Yes</td>
<td>No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEV ACCURACY UNSEPCIFIED</td>
<td>Yes</td>
<td>No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DES ACCURACY UNSEPCIFIED</td>
<td>Yes</td>
<td>No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AwRR ACCURACY UNSEPCIFIED</td>
<td>Yes</td>
<td>No</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.2.13 Recorder Module Alarm Messages

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECORDER INIT ERR</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td>An error occurs during the recorder initialization.</td>
<td>Contact the hospital’s engineers or our customer Service.</td>
</tr>
<tr>
<td>RECORDER SELFTEST ERR</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td>An error might occur to the RAM, ROM and CPU watchdog.</td>
<td>Open the RECORD menu and select the CLEAR REC TASK option. If the problem remains, contact our company for repair.</td>
</tr>
<tr>
<td>RECORDER VLT HIGH</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>A problem occurs to the system power.</td>
<td>If this alarm message is given for many times, contact our company for repair.</td>
</tr>
<tr>
<td>RECORDER VLT LOW</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORDER HEAD HOT</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The thermal head of the recorder is too hot.</td>
<td>Resume the recording till the recorder cools down completely. If the problem still exists, contact our company for repair.</td>
</tr>
<tr>
<td>REC HEAD IN WRONG POS.</td>
<td>Yes</td>
<td>Yes</td>
<td>3</td>
<td>The thermal head of the recorder is in wrong position.</td>
<td>Restore the control lever of the recorder to its previous position.</td>
</tr>
<tr>
<td>RECORDER OUT OF PAPER</td>
<td>Yes</td>
<td>Yes</td>
<td>3</td>
<td>The recorder paper is used up.</td>
<td>Replace with a new paper roll.</td>
</tr>
<tr>
<td>RECORDER PAPER JAM</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>The recording continues for more than 30 minutes.</td>
<td>Place the recorder correctly and try again.</td>
</tr>
<tr>
<td>RECORDER COMM ERR</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td>Error in recorder communication.</td>
<td>Open the RECORD menu and select the CLEAR REC TASK option. If the problem remains, contact our company for repair.</td>
</tr>
<tr>
<td>TOO MANY REC TASKS</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>Quite a few alarm events occur at the same time.</td>
<td>Check the patient’s condition and the alarms. Open the RECORD menu and select the CLEAR REC TASK option. If the problem remains, contact our company for repair.</td>
</tr>
<tr>
<td>RECORDER PAPER W.P.</td>
<td>Yes</td>
<td>Yes</td>
<td>2</td>
<td>The paper roll of the recorder is not placed in the correct position.</td>
<td>Place the paper roll correctly.</td>
</tr>
<tr>
<td>RECORDER S. COMM ERR</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td>Error in recorder communication.</td>
<td>Open the RECORD menu and select the CLEAR REC TASK option. If the problem remains, contact our company for repair.</td>
</tr>
<tr>
<td>REC NOT AVAILABLE</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>Error in the recorder work mode.</td>
<td></td>
</tr>
</tbody>
</table>

Note: N represents the error number.
C.2.14 System Alarm Messages

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>A</th>
<th>B</th>
<th>L</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL CLOCK</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The system time is incorrect.</td>
<td>Reset the system time and then restart the monitor.</td>
</tr>
<tr>
<td>NEED SET</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>No button battery, or the battery power is depleted.</td>
<td>Add, or replace with a new button battery.</td>
</tr>
<tr>
<td>KEYBOARD INIT ERR N</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>Keyboard error. The keyboard cannot be used.</td>
<td>Contact our company for repair.</td>
</tr>
<tr>
<td>KEYBOARD ERROR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NET INIT ERR (G.)</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>The system cannot be connected to the network due to problems in the monitor’s network part.</td>
<td></td>
</tr>
<tr>
<td>NET INIT ERR (Ram)</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NET INIT ERR (Reg)</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NET ERR (Run 1)</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NET ERR (Run 2)</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12V TOO HIGH</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>A problem occurs to the system power.</td>
<td>If this alarm message is given for many times, contact our company for repair.</td>
</tr>
<tr>
<td>12V TOO LOW</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>The battery voltage is too low.</td>
<td>Connect the monitor with AC power to recharge the battery.</td>
</tr>
<tr>
<td>BATTERY TOO LOW</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: N represents the error number.
C.3 Prompt Messages

<table>
<thead>
<tr>
<th>Prompt messages</th>
<th>Cause</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG1 SIGNAL SATURATION</td>
<td>Signals of abrupt change interfere with the ECG signal.</td>
<td>Check whether the electrodes and leads are well connected.</td>
</tr>
<tr>
<td>ECG2 SIGNAL SATURATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEARCH PULSE</td>
<td>The SpO₂ module is searching the pulse.</td>
<td>Wait till the end of the searching.</td>
</tr>
<tr>
<td>DOMINANT RHYTHM CHANGE</td>
<td>A change happens to the patient’s dominant rhythm.</td>
<td>None.</td>
</tr>
<tr>
<td>Mindray DS CO₂ module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ STANDBY</td>
<td>The CO₂ module enters the energy-saving status when switching from the Normal mode to the Standby mode.</td>
<td>None</td>
</tr>
<tr>
<td>CO₂ START UP</td>
<td>The CO₂ module is starting.</td>
<td>Wait for the CO₂ module to finish the startup.</td>
</tr>
<tr>
<td>CO₂ CALIBRATE ZERO</td>
<td>The CO₂ module is in the zeroing status.</td>
<td>Wait for the CO₂ module to finish the zeroing.</td>
</tr>
<tr>
<td>CO₂ WARM UP</td>
<td>The CO₂ module is warming itself up after startup.</td>
<td>Wait for the CO₂ module to finish warming itself up.</td>
</tr>
<tr>
<td>Oridion CO₂ module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ STANDBY</td>
<td>The CO₂ module enters the energy-saving status when switching from the Normal mode to the Standby mode.</td>
<td>None</td>
</tr>
<tr>
<td>CO₂ START UP</td>
<td>The CO₂ module is starting.</td>
<td>Wait for the CO₂ module to finish the startup.</td>
</tr>
<tr>
<td>CO₂ CALIBRATE ZERO</td>
<td>The CO₂ module is in the zeroing status.</td>
<td>Wait for the CO₂ module to finish the zeroing.</td>
</tr>
<tr>
<td>CO₂ SENSOR START UP</td>
<td>The CO₂ sensor is warming itself up after startup.</td>
<td></td>
</tr>
<tr>
<td>CO₂ CALIBRATE</td>
<td>The CO₂ module is in the calibrating status.</td>
<td></td>
</tr>
<tr>
<td>CO₂ PURGING</td>
<td>The CO₂ module is in the purging status.</td>
<td></td>
</tr>
<tr>
<td>Recorder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORDER INITIALIZING</td>
<td>The recorder is in the initializing status.</td>
<td>Wait for the recorder to finish the initialization.</td>
</tr>
<tr>
<td>RECORDER BUSY</td>
<td>The recorder is recording.</td>
<td>Wait for the recorder to finish the recording.</td>
</tr>
<tr>
<td>AG module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG STANDBY</td>
<td>The AG module is in the standby mode.</td>
<td>None</td>
</tr>
<tr>
<td>Prompt messages</td>
<td>Cause</td>
<td>Measure</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>AG IS STARTING</td>
<td>The AG module is starting.</td>
<td>Wait for the AG module to finish the startup.</td>
</tr>
<tr>
<td>AG WARM UP</td>
<td>The AG module is warming itself up.</td>
<td>Wait for the AG module to finish warming itself up.</td>
</tr>
</tbody>
</table>

NIBP module

Manual measure...	The NIBP module is performing the manual measurement.	Wait for the NIBP module to finish the measurement.
CONTINUOUS...	The NIBP module is performing the continuous measurement.	Wait for the NIBP module to finish the continuous measurement.
Auto measuring...	The NIBP module is performing the auto measurement.	Wait for the NIBP module to finish the auto measurement.
Resetting...	The NIBP module is being reset.	Wait the NIBP module to finish the resetting.
Please start	This message appears after the auto measurement interval is selected.	Press the NIBP button to start the measurement.
CALIBRATE...	The NIBP module is performing the calibration.	Wait for the NIBP module to finish the calibration.
Calibration over	The calibration is finished.	None
PNEUMATIC...	The NIBP module is checking the pneumatic system for leakage.	Wait for the NIBP module to finish checking the pneumatic system.
Pneum test over	The NIBP finishes checking the pneumatic system for leakage.	None
Measurement over	The NIBP button is pressed during the measurement.	None
Reset failed	The reset fails.	None
ST LEARNING	The QRS complex template for the ARR analysis is forming.	Wait till the end of the ARR learning.
ARR LEARNING		
DEFIB. SYNC.ON	The DEFIB. SYNC. switch is turned on.	It indicates that the auxiliary output port is outputting DEFIB. SYNC. signals.
FOR YOUR NOTES
Symbols and Abbreviations

Symbols and abbreviations that you may encounter while reading this manual or using the monitor are listed below with their meanings.

D.1 Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ampere</td>
</tr>
<tr>
<td>Ah</td>
<td>ampere hour</td>
</tr>
<tr>
<td>bpm</td>
<td>beats per minute</td>
</tr>
<tr>
<td>BrPM</td>
<td>breaths per minute</td>
</tr>
<tr>
<td>℃</td>
<td>centigrade</td>
</tr>
<tr>
<td>cc</td>
<td>cubic centimeter</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>DS</td>
<td>dyne second</td>
</tr>
<tr>
<td>°F</td>
<td>fahrenheit</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GTT</td>
<td>gutta</td>
</tr>
<tr>
<td>hr</td>
<td>hour</td>
</tr>
<tr>
<td>hPa</td>
<td>hundred pascal</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>inch</td>
<td>inch</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal</td>
</tr>
<tr>
<td>l</td>
<td>litre</td>
</tr>
<tr>
<td>lb</td>
<td>pound</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>mcg</td>
<td>micrograms</td>
</tr>
<tr>
<td>mEq</td>
<td>milli-equivalents</td>
</tr>
<tr>
<td>mg</td>
<td>milligrams</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>Symbol</td>
<td>Unit Definition</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>mm</td>
<td>millimeters</td>
</tr>
<tr>
<td>mmHg</td>
<td>millimeters of mercury</td>
</tr>
<tr>
<td>ms</td>
<td>millisecond</td>
</tr>
<tr>
<td>mV</td>
<td>millivolt</td>
</tr>
<tr>
<td>mW</td>
<td>milliwatt</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>ppm</td>
<td>part per million</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>VA</td>
<td>volt ampere</td>
</tr>
<tr>
<td>Ω</td>
<td>ohm</td>
</tr>
<tr>
<td>µA</td>
<td>microampere</td>
</tr>
<tr>
<td>µm</td>
<td>micron</td>
</tr>
<tr>
<td>µV</td>
<td>microvolt</td>
</tr>
<tr>
<td>W</td>
<td>watt</td>
</tr>
</tbody>
</table>

- minus
% percent
/ per; divide; or
^ power
+ plus
= equal to
< less than
> greater than
\leq less than or equal to
\geq greater than or equal to
\pm plus or minus
\times multiply
© copyright
D.2 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAMI</td>
<td>Association for Advancement of Medical Instrumentation</td>
</tr>
<tr>
<td>AC</td>
<td>alternating current</td>
</tr>
<tr>
<td>ADT</td>
<td>adult</td>
</tr>
<tr>
<td>AG</td>
<td>anaesthesia gas</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standard Institute</td>
</tr>
<tr>
<td>AP</td>
<td>access point</td>
</tr>
<tr>
<td>ARR</td>
<td>arrhythmia</td>
</tr>
<tr>
<td>ART</td>
<td>arterial</td>
</tr>
<tr>
<td>aVF</td>
<td>left foot augmented lead</td>
</tr>
<tr>
<td>aVL</td>
<td>left arm augmented lead</td>
</tr>
<tr>
<td>aVR</td>
<td>right arm augmented lead</td>
</tr>
<tr>
<td>AwRR</td>
<td>Air way respiratory rate</td>
</tr>
<tr>
<td>BSA</td>
<td>body surface area</td>
</tr>
<tr>
<td>BTPS</td>
<td>body temperature and pressure, saturated</td>
</tr>
<tr>
<td>CCU</td>
<td>critical care unit</td>
</tr>
<tr>
<td>CH</td>
<td>channel</td>
</tr>
<tr>
<td>CI</td>
<td>cardiac index</td>
</tr>
<tr>
<td>CISPR</td>
<td>International Special Committee on Radio Interference</td>
</tr>
<tr>
<td>CMS</td>
<td>central monitoring system</td>
</tr>
<tr>
<td>cmos</td>
<td>Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>CO</td>
<td>cardiac output</td>
</tr>
<tr>
<td>CO2</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>COHb</td>
<td>carboxyhemoglobin</td>
</tr>
<tr>
<td>CPU</td>
<td>central processing unit</td>
</tr>
<tr>
<td>CVP</td>
<td>central venous pressure</td>
</tr>
<tr>
<td>D</td>
<td>diastolic</td>
</tr>
<tr>
<td>DC</td>
<td>direct current</td>
</tr>
<tr>
<td>DES</td>
<td>desflurane</td>
</tr>
<tr>
<td>DIA</td>
<td>diastolic</td>
</tr>
<tr>
<td>e.g.</td>
<td>for example</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiograph</td>
</tr>
<tr>
<td>EEC</td>
<td>European Economic Community</td>
</tr>
<tr>
<td>EMC</td>
<td>electromagnetic compatibility</td>
</tr>
<tr>
<td>ENF</td>
<td>enflurane</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>ERR</td>
<td>error</td>
</tr>
<tr>
<td>ES</td>
<td>electrosurgical</td>
</tr>
<tr>
<td>ESU</td>
<td>electrosurgical unit</td>
</tr>
<tr>
<td>Et</td>
<td>end-tidal</td>
</tr>
<tr>
<td>EtCO2</td>
<td>end-tidal carbon dioxide</td>
</tr>
<tr>
<td>EtN2O</td>
<td>end-tidal nitrous oxide</td>
</tr>
<tr>
<td>EtO</td>
<td>Ethylene Oxide</td>
</tr>
<tr>
<td>EtO2</td>
<td>end-tidal oxygen</td>
</tr>
<tr>
<td>EURO</td>
<td>European</td>
</tr>
<tr>
<td>Fi</td>
<td>fraction of inspired</td>
</tr>
<tr>
<td>FiCO2</td>
<td>fraction of inspired carbon oxygen</td>
</tr>
<tr>
<td>FiN2O</td>
<td>fraction of inspired nitrous oxide</td>
</tr>
<tr>
<td>FiO2</td>
<td>fraction of inspired oxygen</td>
</tr>
<tr>
<td>fpga</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>HAL</td>
<td>halothane</td>
</tr>
<tr>
<td>Hb-CO</td>
<td>Carbon mono-oxide hemoglobin</td>
</tr>
<tr>
<td>HR</td>
<td>heart rate</td>
</tr>
<tr>
<td>HT</td>
<td>height</td>
</tr>
<tr>
<td>IBP</td>
<td>invasive brood pressure</td>
</tr>
<tr>
<td>ICP</td>
<td>intracranial pressure</td>
</tr>
<tr>
<td>ICT/B</td>
<td>intracranial catheter tip pressure transducer</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>ID</td>
<td>invasive diastolic brood pressure</td>
</tr>
<tr>
<td>IM</td>
<td>invasive mean brood pressure</td>
</tr>
<tr>
<td>IS</td>
<td>invasive systolic brood pressure</td>
</tr>
<tr>
<td>Ins, INS</td>
<td>Inspired Minimum</td>
</tr>
<tr>
<td>InsCO2</td>
<td>Inspired Minimum carbon dioxide</td>
</tr>
<tr>
<td>ISO</td>
<td>isoflurane</td>
</tr>
<tr>
<td>ISO</td>
<td>International organization for standardization</td>
</tr>
<tr>
<td>LA (L)</td>
<td>left arm</td>
</tr>
<tr>
<td>LAP</td>
<td>left atrial pressure</td>
</tr>
<tr>
<td>LCD</td>
<td>liquid crystal display</td>
</tr>
<tr>
<td>LED</td>
<td>light emitting diode</td>
</tr>
<tr>
<td>LL (F)</td>
<td>left leg</td>
</tr>
<tr>
<td>Loop</td>
<td>loop read-write test fail</td>
</tr>
<tr>
<td>M</td>
<td>mean</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MAC</td>
<td>minimal alveolar concentration</td>
</tr>
<tr>
<td>MAP</td>
<td>mean arterial pressure</td>
</tr>
<tr>
<td>MDD</td>
<td>Medical Device Directive</td>
</tr>
<tr>
<td>MEAN</td>
<td>mean pressure</td>
</tr>
<tr>
<td>MetHb</td>
<td>methemoglobin</td>
</tr>
<tr>
<td>Mii</td>
<td>initialize MII registers fail</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>N2O</td>
<td>nitrous oxide</td>
</tr>
<tr>
<td>N/A</td>
<td>not applied</td>
</tr>
<tr>
<td>NEO</td>
<td>neonate, neonatal</td>
</tr>
<tr>
<td>NIBP</td>
<td>noninvasive blood pressure</td>
</tr>
<tr>
<td>ND</td>
<td>non-invasive diastolic blood pressure</td>
</tr>
<tr>
<td>NM</td>
<td>non-invasive mean blood pressure</td>
</tr>
<tr>
<td>NS</td>
<td>non-invasive systolic blood pressure</td>
</tr>
<tr>
<td>O2</td>
<td>oxygen</td>
</tr>
<tr>
<td>oxyCRG</td>
<td>Oxygen Cardio-respirogram</td>
</tr>
<tr>
<td>P</td>
<td>power</td>
</tr>
<tr>
<td>PA</td>
<td>pulmonary artery</td>
</tr>
<tr>
<td>PD</td>
<td>photodetector</td>
</tr>
<tr>
<td>PED</td>
<td>pediatric</td>
</tr>
<tr>
<td>PLETH</td>
<td>plethysmogram</td>
</tr>
<tr>
<td>PM</td>
<td>Patient Monitor</td>
</tr>
<tr>
<td>PR</td>
<td>pulse rate</td>
</tr>
<tr>
<td>PVC</td>
<td>premature ventricular complex</td>
</tr>
<tr>
<td>QRS</td>
<td>interval of ventricular depolarization</td>
</tr>
<tr>
<td>RA (R)</td>
<td>right arm</td>
</tr>
<tr>
<td>RAM</td>
<td>random access memory</td>
</tr>
<tr>
<td>RAP</td>
<td>right atrial pressure</td>
</tr>
<tr>
<td>Reg</td>
<td>test NE2000 registers fail</td>
</tr>
<tr>
<td>RESP</td>
<td>respiration</td>
</tr>
<tr>
<td>RL (N)</td>
<td>right leg</td>
</tr>
<tr>
<td>ROM</td>
<td>read-only memory</td>
</tr>
<tr>
<td>RR</td>
<td>respiration rate</td>
</tr>
<tr>
<td>S</td>
<td>systolic</td>
</tr>
<tr>
<td>SEV</td>
<td>sevoflurane</td>
</tr>
<tr>
<td>SpO2</td>
<td>arterial oxygen saturation from pulse oximetry</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>SYNC</td>
<td>synchronization</td>
</tr>
<tr>
<td>SYS</td>
<td>systolic</td>
</tr>
<tr>
<td>T1</td>
<td>temperature of channel 1</td>
</tr>
<tr>
<td>T2</td>
<td>temperature of channel 2</td>
</tr>
<tr>
<td>TB</td>
<td>temperature of blood</td>
</tr>
<tr>
<td>TD</td>
<td>temperature difference</td>
</tr>
<tr>
<td>TEMP</td>
<td>temperature</td>
</tr>
<tr>
<td>TFT</td>
<td>Thin-Film Technology</td>
</tr>
<tr>
<td>TI</td>
<td>Temperature of Injectate</td>
</tr>
<tr>
<td>VGA</td>
<td>Video Graphic Array</td>
</tr>
<tr>
<td>WT</td>
<td>weight</td>
</tr>
</tbody>
</table>